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Chapter 1

Introduction

1.1 Our Philosophy

Many people would regard this as being two books in one. One book is an intro-
duction to programming, teaching you basic concepts of organizing data and the
programs that operate over them, ending in the investigation of universally useful
algorithms. The other book is an introduction to programming languages: a study,
from one level up, of the media by which we structure these data and programs.

Obviously, these are not unrelated topics. We learn programming through one
or more languages, and the programs we write then become natural subjects of
study to understand languages at large. Nevertheless, these are considered suffi-
ciently different topics that they are approached separately. This is how we ap-
proached them, too. The one noble exception to this

separation is the best computer
science book ever written, The
Structure and Interpretation of
Computer Programs.

We have come to realize that this separation is neither meaningful nor helpful.
The topics are deeply intertwined and, by accepting that interleaving, the result is
likely to be a much better book. This is my experiment with that format.

1.2 Predictability as a Theme

There are many ways to organize the study of programming and programming
languages. My central theme is the concept of predictability.

Programs are typically static: they live on the moral equivalent of a paper,
unmoving and unchanging. But when we run a program, it produces a complex,
dynamic behavior that yields utility, pleasure, and (sometimes) frustration. Ev-
eryone who writes programs ultimately cares—whether they realize it or not—in
predicting the latter from the former. Sometimes we even write programs to help
us with this task (as we’ll see in chapter 14, chapter 16, chapter 27, and elsewhere).

15
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Predictability has a bad rap. Under the guise of “program reasoning”, it came to
be viewed simultaneously as both noble and mind-numbingly boring. It is certainly
noble, but we will try to present it a way that will hopefully seem utterly natural,
indeed entirely obvious (because we believe it is). Hopefully you’ll come away
from this study reasonably convinced about the central place of predictability in
your own work, and as a metric for programming language design.

1.3 The Structure of This Book

Unlike some other textbooks, this one does not follow a top-down narrative. Rather
it has the flow of a conversation, with backtracking. We will often build up pro-
grams incrementally, just as a pair of programmers would. We will include mis-
takes, not because we don’t know better, but because this is the best way for you to
learn. Including mistakes makes it impossible for you to read passively: you must
instead engage with the material, because you can never be sure of the veracity of
what you’re reading.

At the end, you’ll always get to the right answer. However, this non-linear path
is more frustrating in the short term (you will often be tempted to say, “Just tell
me the answer, already!”), and it makes the book a poor reference guide (you can’t
open up to a random page and be sure what it says is correct). However, that feeling
of frustration is the sensation of learning. We don’t know of a way around it.

At various points you will encounter this:

Exercise

This is an exercise. Do try it.

This is a traditional textbook exercise. It’s something you need to do on your
own. If you’re using this book as part of a course, this may very well have been
assigned as homework. In contrast, you will also find exercise-like questions that
look like this:

Do Now!

There’s an activity here! Do you see it?

When you get to one of these, stop. Read, think, and formulate an answer
before you proceed. You must do this because this is actually an exercise, but
the answer is already in the book—most often in the text immediately following
(i.e., in the part you’re reading right now)—or is something you can determine for
yourself by running a program. If you just read on, you’ll see the answer without
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having thought about it (or not see it at all, if the instructions are to run a program),
so you will get to neither (a) test your knowledge, nor (b) improve your intuitions.
In other words, these are additional, explicit attempts to encourage active learning.
Ultimately, however, we can only encourage it; it’s up to you to practice it.

1.4 The Language of This Book

This book uses a new programming language called Pyret. Pyret is the outgrowth
of our deep experience programming in and designing functional, object-oriented,
and scripting languages, as well as their type systems, program analyses, and de-
velopment environments.

The language’s syntax is inspired by Python. It fits the niche missing in com- Unlike Python, Pyret will
enforce indentation rather than
interpret it: that is, indentation
will simply become another
syntax well-formedness
criterion. But that hasn’t been
implemented yet.

puter science education of a simple language that sheds both the strange corner-
cases (of which there are many) of Python while adding important features that
Python lacks for learning programming (such as algebraic datatypes, optional an-
notations on variables, design decisions that better enable the construction of de-
velopment environments, and strong support for testing). Beginning programmers
can rest in the knowledge they are being cared for, while programmers with past
acquaintance of the language menagerie, from serpents to dromedaries, should find
Pyret familiar and comfortable.

http://pyret.org/
http://cs.brown.edu/~sk/Publications/Papers/Published/pmmwplck-python-full-monty/
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Chapter 3

Getting Started

3.1 Motivating Example: Flags

Imagine that you are starting a graphic design company, and want to be able to
create images of flags of different sizes and configurations for your customers.
The following diagram shows a sample of the images that your software will have
to help you create:

Before we try to write code to create these different images, you should step
back, look at this collection of images, and try to identify features of the images
that might help us decide what to do. To help with this, we’re going to answer a
pair of specific questions to help us make sense of the images:

• What do you notice about the flags?

• What do you wonder about the flags or a program that might produce them?

Do Now!

Actually write down your answers. Noticing features of data and information
is an essential skill in computing.

21
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Some things you might have noticed:

• Some flags have similar structure, just with different colors

• Some flags come in different sizes

• Some flags have poles

• Most of these look pretty simple, but some real flags have complicated fig-
ures on them

. . . and so on.
Some things you might have wondered:

• Do I need to be able to draw these images by hand?

• Will we be able to generate different sized flags from the same code?

• What if we have a non-rectangular flag?

. . . and so on.
The features that we noticed suggest some things we’ll need to be able to do to

write programs to generate flags:

• We might want to compute the heights of the stripes from the overall flag
dimensions (we’ll write programs using numbers)

• We need a way to describe colors to our program (we’ll learn strings)

• We need a way to create images based on simple shapes of different colors
(we’ll create and combine expressions)

Let’s get started!

3.2 Numbers

Start simple: compute the sum of 3 and 5.
To do this computation with a computer, we need to write down the compu-

tation and ask the computer to run or evaluate the computation so that we get a
number back. A software or web-application in which you write and run programs
is called a programming environment. In the first part of this course, we will use a
language called Pyret.
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If you are new to Pyret, go to code.pyret.org (which we’ll henceforth refer to
as “CPO”).

For now, we will work only in the right Pyret window (the interactions win-
dow).

The ››› is called the “prompt” – that’s where we tell CPO to run a program.
Let’s tell it to add 3 and 5. Here’s what we write:

››› 3 + 5

Press the Return key, and the result of the computation will appear on the line
below the prompt, as shown below:

››› 3 + 5

8
Not surprisingly, we can do other arithmetic computations

››› 2 * 6

12
(Note: * is how we write the multiplication sign.)
What if we try 3 + 4 * 5?

Do Now!

Try it! See what Pyret says.

Pyret gave you an error message. What it says is that Pyret isn’t sure whether
we mean

(3 + 4) * 5
or

3 + (4 * 5)
so it asks us to include parentheses to make that explicit. Every programming

language has a set of rules about how you have to write down programs. Pyret’s
rules require parentheses to avoid ambiguity.

››› (3 + 4) * 5

35
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››› 3 + (4 * 5)

23
Another Pyret rule requires spaces around the arithmetic operators. See what

happens if you forget the spaces:

››› 3+4

Pyret will show a different error message that highlights the part of the code
that isn’t formatted properly, along with an explanation of the issue that Pyret has
detected. To fix the error, you can press the up-arrow key within the right window
and edit the previous computation to add the spaces.

Do Now!

Try doing it right now, and confirm that you succeeded!

What if we want to get beyond basic arithmetic operators? Let’s say we want
the minimum of two numbers. We’d write this as

››› num-min(2, 8)

Why num-? It’s because
“minimum” is a concept that
makes sense on data other than
numbers; Pyret calls the min
operator num-min to avoid
ambiguity.

3.3 Expressions

Note that when we run num-min, we get a number in return (as we did for +,
*, . . . ). This means we should be able to use the result of num-min in other
computations where a number is expected:

››› 5 * num-min(2, 8)

10

››› (1 + 5) * num-min(2, 8)

12
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Hopefully you are starting to see a pattern. We can build up more complicated
computations from smaller ones, using operations to combine the results from the
smaller computations. We will use the term expression to refer a computation
written in a format that Pyret can understand and evaluate to an answer.

Exercise

In CPO, try to write the expressions for each of the following computations:

• subtract 3 from 7, then multiply the result by 4

• subtract 3 from the multiplication of 7 and 4

• the sum of 3 and 5, divided by 2

• the max of 5 - 10 and -20

• 2 divided by the sum of 3 and 5

Do Now!

What if you get a fraction as a response?
If you’re not sure how to get a fraction, there are two ways: you can either

write an expression that produces a fractional answer, or you can type one in
directly (e.g., 1/3).

Either way, you can click on the result in the interactions window to
change how the number is presented. Try it!

3.4 Terminology

Look at an interaction like

››› (3 + 4) * (5 + 1)

42
There are actually several kinds of information in this interaction, and we

should give them names:

• Expression: a computation written in the formal notation of a programming
language

Examples here include 4, 5 + 1, and (3 + 4) * (5 + 1)
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• Value: a expression that can’t be computed further (it is its own result)

So far, the only values we’ve seen are numbers.

• Program: a sequence of expressions that you want to run

3.5 Strings

What if we wanted to write a program that used information other than numbers,
such as someone’s name? For names and other text-like data, we use what are
called strings. Here are some examples:

"Kathi"
"Go Bears!"
"CSCI0111"
"Carberry, Josiah"

What do we notice? Strings can contain spaces, punctuation, and numbers. We
use them to capture textual data. For our flags example, we’ll use strings to name
colors: "red", "blue", etc.

Note that strings are case-sensitive, meaning that capitalization matters (we’ll
see where it matters shortly).

3.6 Images

We have seen two kinds of data: numbers and strings. For flags, we’ll also need
images. Images are different from both numbers and strings (you can’t describe
an entire image with a single number—well, not unless you get much farther into
computer science but let’s not get ahead of ourselves).

Images are “optional”, in the sense that some programs use them but many
do not (where most programs use numbers and strings). When we want to use a
feature that isn’t common to most programs, we have to tell Pyret that we plan to
use that feature (these are called “libraries”). For images, we do this by running
the following at the prompt:

include image
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Do Now!

Below the include image, write each of these Pyret expressions to see
what they produce:

• circle(30, "solid", "red")

• circle(30, "outline", "blue")

• rectangle(20, 10, "solid", "purple")

Each of these expressions names the shape to draw, then configures the shape
in the parentheses that follow. The configuration information consists of the shape
dimensions (the radius for circles, the width and height for rectangles, both mea-
sured in screen pixels), a string indicating whether to make a solid shape or just an
outline, then a string with the color to use in drawing the shape.

Which shapes and colors does Pyret know about? Hold this question for just a
moment. We’ll show you how to look up information like this in the documentation
shortly.

3.6.1 Combining Images

Earlier, we saw that we could use operations like + and * to combine numbers
through expressions. Any time you get a new kind of datum in programming, you
should ask what operations the language gives you for working with that data. In
the case of images in Pyret, the collection includes the ability to:

• rotate them

• scale them

• flip them

• put two of them side by side

• place one on top of the other

• and more ...

Let’s see how to use some of these.
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Exercise

Type the following expressions into Pyret:

rotate(45, rectangle(20, 30, "solid", "red"))
What does the 45 represent? Try some different numbers in place of the

45 to confirm or refine your hypothesis.

overlay(circle(25, "solid", "yellow"),
rectangle(50, 50, "solid", "blue"))
Can you describe in prose what overlay does?

above(circle(25, "solid", "red"),
rectangle(30, 50, "solid", "blue"))
What kind of value do you get from using the rotate or above oper-

ations? (hint: your answer should be one of number, string, or image)

These examples let us think a bit deeper about expressions. We have sim-
ple values like numbers and strings. We have operations or functions that combine
values, like + or rotate (“functions” is the term more commonly used in comput-
ing, whereas your math classes likely used “operations”). Every function produces
a value, which can be used as input to another function. We build up expressions
by using values and the outputs of functions as inputs to other functions.

For example, we used above to create an image out of two smaller images.
We could take that image and rotate it using the following expression.

rotate(45,
above(circle(25, "solid", "red"),

rectangle(30, 50, "solid", "blue")))

This idea of using the output of one function as input to another is known as
composition. Most interesting programs arise from composing results from one
computation with another. Getting comfortable with composing expressions is an
essential first step in learning to program.



3.7. STEPPING BACK: TYPES, ERRORS, AND DOCUMENTATION 29

Exercise

Try to create the following images:

• a blue triangle (you pick the size). As with circle, there is a triangle
function that takes a side length, fill style, and color and produces an
image of an equilateral triangle.

• a blue triangle inside a yellow rectangle

• a triangle oriented at an angle

• a bullseye with 3 nested circles aligned in their centers (e.g., the Target
logo)

• whatever you want—play around and have fun!

The bullseye might be a bit challenging. The overlay function only takes
two images, so you’ll need to think about how to use composition to layer
three circles.

3.6.2 Making a Flag

We’re ready to make our first flag! Let’s start with the flag of Armenia, which has
three horizontal stripes: red on top, blue in the middle, and orange on the bottom.

Exercise

Use the functions we have learned so far to create an image of the Armenian
flag. You pick the dimensions (we recommend a width between 100 and
300).

Make a list of the questions and ideas that occur to you along the way.

3.7 Stepping Back: Types, Errors, and Documentation

Now that you have an idea of how to create a flag image, let’s go back and look
a bit more carefully at two concepts that you’ve already encountered: types and
error messages.

3.7.1 Types and Contracts

Now that we are composing functions to build more complicated expressions out
of smaller ones, we will have to keep track of which combinations make sense.

https://www.target.com/
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Consider the following sample of Pyret code:

8 * circle(25, "solid", "red")

What value would you expect this to produce? Multiplication is meant to work
on numbers, but this code asks Pyret to multiply a number and an image. Does this
even make sense?

This code does not make sense, and indeed Pyret will produce an error message
if we try to run it.

Do Now!

Try to run that code, then look at the error message. Write down the informa-
tion that the error message is giving you about what went wrong (we’ll come
back to your list shortly).

The bottom of the error message says:
The * operator expects to be given two Numbers
Notice the word “Numbers”. Pyret is telling you what kind of information

works with the * operation. In programming, values are organized into types (e.g.,
number, string, image). These types are used in turn to describe what kind of inputs
and results (a.k.a., outputs) a function works with. For example, * expects to be
given two numbers, from which it will return a number. The last expression we
tried violated that expectation, so Pyret produced an error message.

Talking about “violating expectations” sounds almost legal, doesn’t it? It does,
and the term contract refers to the required types of inputs and promised types
of outputs when using a specific function. Here are several examples of Pyret
contracts (written in the notation you will see in the documentation):

* :: (x1 :: Number, x2 :: Number) -> Number

circle :: (radius :: Number,
mode :: String,
color :: String) -> Image

rotate :: (degrees :: Number,
img :: Image) -> Image

overlay :: (upper-img :: Image,
lower-img :: Image) -> Image
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Do Now!

Look at the notation pattern across these contracts. Can you label the various
parts and what information they appear to be giving you?

Let’s look closely at the overlay contract to make sure you understand how
to read it. It gives us several pieces of information:

• There is a function called overlay

• It takes two inputs (the parts within the parentheses), both of which have the
type Image

• The first input is the image that will appear on top

• The second input is the image that will appear on the bottom

• The output from calling the function (which follows ->) will have type
Image

In general, we read the double-colon (::) as “has the type”. We read the arrow
(->) as “returns”.

Whenever you compose smaller expressions into more complex expressions,
the types produced by the smaller expressions have to match the types required
by the function you are using to compose them. In the case of our erroneous *
expression, the contract for * expects two numbers as inputs, but we gave an image
for the second input. This resulted in an error message when we tried to run the
expression.

A contract also summarizes how many inputs a function expects. Look at the
contract for the circle function. It expects three inputs: a number (for the ra-
dius), a string (for the style), and a string (for the color). What if we forgot the
style string, and only provided the radius and color, as in:

circle(100, "purple")

The error here is not about the type of the inputs, but rather about the number
of inputs provided.



32 CHAPTER 3. GETTING STARTED

Exercise

Run some expressions in Pyret that use an incorrect type for some input to
a function. Run others where you provide the wrong number of inputs to a
function.

What text is common to the incorrect-type errors? What text is common
to the wrong numbers of inputs?

Take note of these so you can recognize them if they arise while you are
programming.

3.7.2 Format and Notation Errors

We’ve just seen two different kinds of mistakes that we might make while pro-
gramming: providing the wrong type of inputs and providing the wrong number of
inputs to a function. You’ve likely also run into one additional kind of error, such
as when you make a mistake with the punctuation of programming. For example,
you might have typed an example such as these:

• 3+7

• circle(50 "solid" "red")

• circle(50, "solid, "red")

• circle(50, "solid," "red")

• circle 50, "solid," "red")

Do Now!

Make sure you can spot the error in each of these! Evaluate these in Pyret if
necessary.

You already know various punctuation rules for writing prose. Code also has
punctuation rules, and programming tools are strict about following them. While
you can leave out a comma and still turn in an essay, a programming environment
won’t be able to evaluate your expressions if they have punctuation errors.

Do Now!

Make a list of the punctuation rules for Pyret code that you believe you’ve
encountered so far.



3.7. STEPPING BACK: TYPES, ERRORS, AND DOCUMENTATION 33

Here’s our list:

• Spaces are required around arithmetic operators.

• Parentheses are required to indicate order of operations.

• When we use a function, we put a pair of parentheses around the inputs, and
we separate the inputs with commas.

• If we use a double-quotation mark to start a string, we need another double-
quotation mark to close that string.

In programming, we use the term syntax to refer to the rules of writing proper
expressions (we explicitly didn’t say “rules of punctuation” because the rules go
beyond what you think of as punctuation, but that’s a fair place to start). Making
mistakes in your syntax is common at first. In time, you’ll internalize the rules. For
now, don’t get discouraged if you get errors about syntax from Pyret. It’s all part
of the learning process.

3.7.3 Finding Other Functions: Documentation

At this point, you may be wondering what else you can do with images. We men-
tioned scaling images. What other shapes might we make? Is there a list some-
where of everything we can do with images?

Every programming language comes with documentation, which is where you
find out the various operations and functions that are available, and your options
for configuring their parameters. Documentation can be overwhelming for novice
programmers, because it contains a lot of detail that you don’t even know that you
need just yet. Let’s take a look at how you can use the documentation as a beginner.

Open the Pyret Image Documentation. Focus on the sidebar on the left. At
the top, you’ll see a list of all the different topics covered in the documentation.
Scroll down until you see “rectangle” in the sidebar: surrounding that, you’ll see
the various function names you can use to create different shapes. Scroll down a bit
further, and you’ll see a list of functions for composing and manipulating images.

If you click on a shape or function name, you’ll bring up details on using
that function in the area on the right. You’ll see the contract in a shaded box, a
description of what the function does (under the box), and then a concrete example
or two of what you type to use the function. You could copy and paste any of the
examples into Pyret to see how they work (changing the inputs, for example).

For now, everything you need documentation wise is in the section on images.
We’ll go further into Pyret and the documentation as we go.

https://www.pyret.org/docs/latest/image.html
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Chapter 4

Naming Values

4.1 The Definitions Window

So far, we have only used the interactions window on the right half of the CPO

screen. As we have seen, this window acts like a calculator: you type an expression
at the prompt and CPO produces the result of evaluating that expression.

The left window is called the definitions window. This is where you can put
code that you want to save to a file. It has another use, too: it can help you organize
your code as your expressions get larger.

4.2 Naming Values

The expressions that create images involve a bit of typing. It would be nice to
have shorthands so we can “name” images and refer to them by their names. This
is what the definitions window is for: you can put expressions and programs in
the definitions window, then use the “Run” button in CPO to make the definitions
available in the interactions window.

Do Now!

Put the following in the definitions window:

include image
red-circ = circle(30, "solid", "red")

Hit run, then enter red-circ in the interactions window. You should
see the red circle.

More generally, if you write code in the form:

35
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NAME = EXPRESSION
Pyret will associate the value of EXPRESSIONwith NAME. Anytime you write

the (shorthand) NAME, Pyret will automatically (behind the scenes) replace it with
the value of EXPRESSION. For example, if you write x = 5 + 4 at the prompt,
then write x, CPO will give you the value 9 (not the original 5 + 4 expression).

What if you enter a name at the prompt that you haven’t associated with a
value?

Do Now!

Try typing puppy at the interactions window prompt (›››). Are there any
terms in the error message that are unfamiliar to you?

CPO (and indeed many programming tools) use the phrase “unbound identifier”
when an expression contains a name that has not been associated with (or bound
to) a value.

4.2.1 Names Versus Strings

At this point, we have seen words being used in two ways in programming: (1) as
data within strings and (2) as names for values. These are two very different uses,
so it is worth reviewing them.

• Syntactically (another way of saying “in terms of how we write it”), we
distinguish strings and names by the presence of double quotation marks.
Note the difference between puppy and "puppy".

• Strings can contain spaces, but names cannot. For example, "hot pink"
is a valid piece of data, but hot pink is not a single name. When you want
to combine multiple words into a name (like we did above with red-circ),
use a hyphen to separate the words while still having a single name (as a
sequence of characters). Different programming languages allow different
separators; for Pyret, we’ll use hyphens.

• Entering a word as a name versus as a string at the interactions prompt
changes the computation that you are asking Pyret to perform. If you enter
puppy (the name, without double quotes), you are asking Pyret to lookup
the value that you previously stored under that name. If you enter "puppy"
(the string, with double quotes) you are simply writing down a piece of data
(akin to typing a number like 3): Pyret returns the value you entered as the
result of the computation.
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• If you enter a name that you have not previously associated with a value,
Pyret will give you an “unbound identifier” error message. In contrast, since
strings are just data, you won’t get an error for writing a previously-unused
string (there are some special cases of strings, such as when you want to put
a quotation mark inside them, but we’ll set that aside for now).

Novice programmers frequently confuse names and strings at first. For now, re-
member that the names you associate with values using = cannot contain quotation
marks, while word- or text-based data must be wrapped in double quotes.

4.2.2 Expressions versus Statements

Definitions and expressions are two useful aspects of programs, each with their
own role. Definitions tell Pyret to associate names with values. Expressions tell
Pyret to perform a computation and return the result.

Exercise

Enter each of the following at the interactions prompt:

• 5 + 8

• x = 14 + 16

• triangle(20, "solid", "purple")

• blue-circ = circle(x, "solid", "blue")

The first and third are expressions, while the second and fourth are defini-
tions. What do you observe about the results of entering expressions versus
the results of entering definitions?

Hopefully, you notice that Pyret doesn’t seem to return anything from the def-
initions, but it does display a value from the expressions. When you write a defi-
nition, you are telling Pyret to make an entry in its directory that associates names
with values. Pyret evaluates the expression on the right side of the =, then stores
the resulting value alongside the name. In contrast, if you write just an expression,
you are asking Pyret to perform a computation and produce the result.

In programming, we distinguish expressions, which yield values, from state-
ments ,which don’t yield values but instead give some other kind of instruction to
the language. So far, definitions are the only kinds of statements we’ve seen.
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Exercise

Assuming you still have the blue-circ definition from above in your in-
teractions window, enter blue-circ at the prompt (you can re-enter than
definition if it is no longer there).

Based on what Pyret does in response, is blue-circ an expression or
a definition?

Since blue-circ yielded a result, we infer that a name by itself is also an
expression. When Pyret encounters a name in (or as) an expression, it goes to the
directory and looks it up, returning the saved value.

This exercise highlights the difference between making a definition and using
a defined name. These two tasks are akin to what happens with a human-language
dictionary: at some point, someone made an entry in the dictionary for a word.
When you use a dictionary, you are interested in retrieving the meaning or value of
that word.

4.3 Using Names to Streamline Building Images

The ability to name values can make it easier to build up complex expressions.
Let’s put a rotated purple triangle inside a green square:

overlay(rotate(45, triangle(30, "solid", "purple")),
rectangle(60, 60, "solid", "green"))
However, this can get quite difficult to read and understand. Instead, we can

name the individual shapes before building the overall image:

purple-tri = triangle(30, "solid", "purple")
green-sqr = rectangle(60, 60, "solid", "green")

overlay(rotate(45, purple-tri),
green-sqr)
In this version, the overlay expression is quicker to read because we gave

descriptive names to the initial shapes.
Go one step further: let’s add another purple-triangle on top of the existing

image:

purple-tri = triangle(30, "solid", "purple")
green-sqr = rectangle(60, 60, "solid", "green")

above(purple-tri,
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overlay(rotate(45, purple-tri),
green-sqr))

Here, we see a new benefit to leveraging names: we can use purple-tri
twice in the same expression without having to write out the longer triangle
expression more than once.

Exercise

Assume that your definitions window contained only this most recent ex-
pression (and the include image statement). How many separate images
would appear in the interactions window if you pressed Run? Do you see the
purple triangle and green square on their own, or only combined? Why or
why not?

Exercise

Re-write your expression of the Armenian flag (from section 3.6.2), this time
giving intermediate names to each of the stripes.

In practice, programmers don’t name every individual image or expression re-
sult when creating more complex expressions. They name ones that will get used
more than once, or ones that have particular significance for understanding their
program. We’ll have more to say about naming as our programs get more compli-
cated.
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Chapter 5

From Repeated Expressions to
Functions

5.1 Example: Similar Flags

Consider the following two expressions to draw the flags of Armenia and Austria
(respectively). These two countries have the same flag, just with different colors:

# Lines starting with # are comments for human readers.
# Pyret ignores everything on a line after #.

# armenia
frame(

above(rectangle(120, 30, "solid", "red"),
above(rectangle(120, 30, "solid", "blue"),

rectangle(120, 30, "solid", "orange"))))

# austria
frame(

above(rectangle(120, 30, "solid", "red"),
above(rectangle(120, 30, "solid", "white"),

rectangle(120, 30, "solid", "red"))))
Rather than write this program twice, it would be nice to write the common

expression only once, then just change the colors to generate each flag. Concretely,
we’d like to have a custom operator such as three-stripe-flag that we could
use as follows:

# armenia

41
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three-stripe-flag("red", "blue", "orange")

# austria
three-stripe-flag("red", "white", "red")

In this program, we provide three-stripe-flag only with the informa-
tion that customizes the image creation to a specific flag. The operation itself would
take care of creating and aligning the rectangles. We want to end up with the same
images for the Armenian and Austrian flags as we would have gotten with our
original program. Such an operator doesn’t exist in Pyret: it is specific only to our
application of creating flag images. To make this program work, then, we need the
ability to add our own operators (henceforth called functions) to Pyret.

5.2 Defining Functions

In programming, a function takes one or more (configuration) parameters and uses
them to produce a result. Specifically, the way we create a function is to

• Write down some examples of the desired computation (in this case, the
expressions that produce the Armenian and Austrian flags).

• Identify which parts are fixed (i.e., the creation of rectangles with dimen-
sions 120 and 30, the use of above to stack the rectangles) and which are
changing (i.e., the stripe colors).

• For each changing part, give it a name (say top, middle, and bottom),
which will be the parameter that stands for that part.

• Rewrite the examples to be in terms of these parameters:

frame(
above(rectangle(120, 30, "solid", top),

above(rectangle(120, 30, "solid", middle),
rectangle(120, 30, "solid", bottom))))

Do Now!

Why is there now only one expression, when before we had a separate
one for each flag?
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We have only one expression because the whole point was to get rid of all
the changing parts and replace them with parameters.

• Name the function something suggestive: e.g., three-stripe-flag.

• Write the syntax for functions around the expression:

fun <function name>(<parameters>):
<the expression goes here>

end

where the expression is called the body of the function.

Here’s the end product:

fun three-stripe-flag(top, middle, bot):
frame(

above(rectangle(120, 30, "solid", top),
above(rectangle(120, 30, "solid", middle),

rectangle(120, 30, "solid", bot))))
end

While this looks like a lot of work now, it won’t once you get used to it. We will
go through the same steps over and over, and eventually they’ll become so intuitive
that we won’t even remember that we actually took steps to get from examples to
the function: it’ll become a single, natural step.

With this function in hand, we can write the following two expressions to gen-
erate our original flag images:

three-stripe-flag("red", "blue", "orange")
three-stripe-flag("red", "white", "red")

When we provide values for the parameters of a function to get a result, we say
that we are calling the function. We use the term call for expressions of this form.

If we want to name the resulting images, we can do so as follows:

armenia = three-stripe-flag("red", "blue", "orange")
austria = three-stripe-flag("red", "white", "red")

(Side note: Pyret only allows one value per name in the directory. If your file
already had definitions for the names armenia or austria, Pyret will give you
an error at this point. You can use a different name (like austria2) or comment
out the original definition using #.)
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5.2.1 How Functions Evaluate

So far, we have learned three rules for how Pyret processes your program:

• If you write an expression, Pyret evaluates it to produce its value.

• If you write a statement that defines a name, Pyret evaluates the expression
(right side of =), then makes an entry in the directory to associate the name
with the value.

• If you write an expression that uses a name from the directory, Pyret substi-
tutes the name with the corresponding value.

Now that we can define our own functions, we have to consider two more cases:
what does Pyret do when you define a function (using fun), and what does Pyret
do when you call a functiom (with values for the parameters)?

• When Pyret encounters a function definition in your file, it makes an entry in
the directory to associate the name of the function with its code. The body
of the function does not get evaluated at this time.

• When Pyret encounters a function call while evaluating an expression, it
replaces the call with the body of the function, but with the parameter values
substituted for the parameter names in the body. Pyret then continues to
evaluate the body with the substituted values.

As an example of the function-call rule, if you evaluate

three-stripe-flag("red", "blue", "orange")
Pyret starts from the function body

frame(
above(rectangle(120, 30, "solid", top),

above(rectangle(120, 30, "solid", middle),
rectangle(120, 30, "solid", bot))))

substitutes the parameter values

frame(
above(rectangle(120, 30, "solid", "red"),

above(rectangle(120, 30, "solid", "blue"),
rectangle(120, 30, "solid", "orange"))))
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then evaluates the expression, producing the flag image.
Note that the second expression (with the substituted values) is the same ex-

pression we started from for the Armenian flag. Substitution restores that ex-
pression, while still allowing the programmer to write the shorthand in terms of
three-stripe-flag.

5.2.2 Type Annotations

What if we made a mistake, and tried to call the function as follows:

three-stripe-flag(50, "blue", "red")

Do Now!

What do you think Pyret will produce for this expression?

The first parameter to three-stripe-flag is supposed to be the color of
the top stripe. The value 50 is not a string (much less a string naming a color).
Pyret will substitute 50 for top in the first call to rectangle, yielding the fol-
lowing:

frame(
above(rectangle(120, 30, "solid", 50),

above(rectangle(120, 30, "solid", "blue"),
rectangle(120, 30, "solid", "red"))))

When Pyret tries to evaluate the rectangle expression to create the top
stripe, it generates an error that refers to that call to rectangle.

If someone else were using your function, this error might not make sense:
they didn’t write an expression about rectangles. Wouldn’t it be better to have
Pyret report that there was a problem in the use of three-stripe-flag itself?

As the author of three-stripe-flag, you can make that happen by an-
notating the parameters with information about the expected type of value for each
parameter. Here’s the function definition again, this time requiring the three pa-
rameters to be strings:

fun three-stripe-flag(top-color :: String,
mid-color :: String,
bot-color :: String):

frame(
above(rectangle(120, 30, "solid", top-color),

above(rectangle(120, 30, "solid", mid-color),
rectangle(120, 30, "solid", bot-color))))
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end

Notice that the notation here is similar to what we saw in contracts within the
documentation: the parameter name is followed by a double-colon (::) and a type
name (so far, one of Number, String, or Image).Putting each parameter on its

own line is not required, but it
sometimes helps with
readability.

Run your file with this new definition and try the erroneous call again. You
should get a different error message that is just in terms of three-stripe-flag.

It is also common practice to add a type annotation that captures the type of the
function’s output. That annotation goes after the list of parameters:

fun three-stripe-flag(top-color :: String,
mid-color :: String,
bot-color :: String) -> Image:

frame(
above(rectangle(120, 30, "solid", top-color),

above(rectangle(120, 30, "solid", mid-color),
rectangle(120, 30, "solid", bot-color))))

end

Note that all of these type annotations are optional. Pyret will run your program
whether or not you include them. You can put type annotations on some parameters
and not others; you can include the output type but not any of the parameter types.
Different programming languages have different rules about types.

We will think of types as playing two roles: giving Pyret information that it
can use to focus error messages more accurately, and guiding human readers of
programs as to the proper use of user-defined functions.

5.2.3 Documentation

Imagine that you opened your program file from this chapter a couple of months
from now. Would you remember what computation three-stripe-flag does?
The name is certainly suggestive, but it misses details such as that the stripes are
stacked vertically (rather than horizontally) and that the stripes are equal height.
Function names aren’t designed to carry this much information.

Programmers also annotate a function with a docstring, a short, human-language
description of what the function does. Here’s what the Pyret docstring might look
like for three-stripe-flag:

fun three-stripe-flag(top :: String,
middle :: String,
bot :: String) -> Image:

doc: "produce image of flag with three equal-height horizontal stripes"
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frame(
above(rectangle(120, 30, "solid", top),

above(rectangle(120, 30, "solid", middle),
rectangle(120, 30, "solid", bot))))

end

While docstrings are also optional from Pyret’s perspective, you should always
provide one when you write a function. They are extremely helpful to anyone
who has to read your program, whether that is a co-worker, grader. . . or yourself, a
couple of weeks from now.

5.3 Functions Practice: Moon Weight

Suppose we’re responsible for outfitting a team of astronauts for lunar exploration.
We have to determine how much each of them will weigh on the Moon’s surface.
On the Moon, objects weigh only one-sixth their weight on earth. Here are the
expressions for several astronauts (whose weights are expressed in pounds):

100 * 1/6
150 * 1/6
90 * 1/6
As with our examples of the Armenian and Austrian flags, we are writing the same
expression multiple times. This is another situation in which we should create a
function that takes the changing data as a parameter but captures the fixed compu-
tation only once.

In the case of the flags, we noticed we had written essentially the same expres-
sion more than once. Here, we have a computation that we expect to do multiple
times (once for each astronaut). It’s boring to write the same expression over and
over again. Besides, if we copy or re-type an expression multiple times, sooner or
later we’re bound to make a transcription error. This is an instance of the DRY

principle.Let’s remind ourselves of the steps for creating a function:

• Write down some examples of the desired calculation. We did that above.

• Identify which parts are fixed (above, * 1/6) and which are changing (above,
100, 150, 90...).

• For each changing part, give it a name (say earth-weight), which will
be the parameter that stands for it.

• Rewrite the examples to be in terms of this parameter:

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
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earth-weight * 1/6

This will be the body, i.e., the expression inside the function.

• Come up with a suggestive name for the function: e.g., moon-weight.

• Write the syntax for functions around the body expression:

fun moon-weight(earth-weight):
earth-weight * 1/6

end

• Remember to include the types of the parameter and output, as well as the
documentation string. This yields the final function:

fun moon-weight(earth-weight :: Number) -> Number:
doc:" Compute weight on moon from weight on earth"
earth-weight * 1/6

end

5.4 Documenting Functions with Examples

In each of the functions above, we’ve started with some examples of what we
wanted to compute, generalized from there to a generic formula, turned this into a
function, and then used the function in place of the original expressions.

Now that we’re done, what use are the initial examples? It seems tempting to
toss them away. However, there’s an important rule about software that you should
learn: Software Evolves. Over time, any program that has any use will change and
grow, and as a result may end up producing different values than it did initially.
Sometimes these are intended, but sometimes these are a result of mistakes (in-
cluding such silly but inevitable mistakes like accidentally adding or deleting text
while typing). Therefore, it’s always useful to keep those examples around for fu-
ture reference, so you can immediately be alerted if the function deviates from the
examples it was supposed to generalize.

Pyret makes this easy to do. Every function can be accompanied by a where
clause that records the examples. For instance, our moon-weight function can
be modified to read:

fun moon-weight(earth-weight :: Number) -> Number:
doc:" Compute weight on moon from weight on earth"
earth-weight * 1/6
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where:
moon-weight(100) is 100 * 1/6
moon-weight(150) is 150 * 1/6
moon-weight(90) is 90 * 1/6

end

When written this way, Pyret will actually check the answers every time you run
the program, and notify you if you have changed the function to be inconsistent
with these examples.

Do Now!

Check this! Change the formula—for instance, replace the body of the func-
tion with

earth-weight * 1/3
—and see what happens. Pay attention to the output from CPO: you should
get used to recognizing this kind of output.

Do Now!

Now, fix the function body, and instead change one of the answers—e.g.,
write

moon-weight(90) is 90 * 1/3
—and see what happens. Contrast the output in this case with the output
above.

Of course, it’s pretty unlikely you will make a mistake with a function this sim-
ple (except through a typo). After all, the examples are so similar to the function’s
own body. Later, however, we will see that the examples can be much simpler than
the body, and there is a real chance for things to get inconsistent. At that point,
the examples become invaluable in making sure we haven’t made a mistake in our
program. In fact, this is so valuable in professional software development that good
programmers always write down such examples—called tests—to make sure their
programs are behaving as they expect.

5.5 Functions Practice: Cost of pens

Let’s create one more function, this time for a more complicated example. Imagine
that you are trying to compute the total cost of an order of pens with slogans (or
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messages) printed on them. Each pen costs 25 cents plus an additional 2 cents per
character in the message (we’ll count spaces between words as characters).

Following our steps to create a function once again, let’s start by writing two
concrete expressions that do this computation.

# ordering 3 pens that say "wow"
3 * (0.25 + (string-length("wow") * 0.02))

# ordering 10 pens that say "smile"
10 * (0.25 + (string-length("smile") * 0.02))

These examples introduce a new built-in function called string-length.
It takes a string as input and produces the number of characters (including spaces
and punctuation) in the string. These examples also show an example of working
with numbers other than integers.Pyret requires a number before

the decimal point, so if the
“whole number” part is zero,
you need to write 0 before the
decimal. Also observe that
Pyret uses a decimal point; it
doesn’t support conventions
such as “0,02”.

The second step to writing a function was to identify which information differs
across our two examples. In this case, we have two: the number of pens and the
message to put on the pens. This means our function will have two parameters
rather than just one.

fun pen-cost(num-pens :: Number, message :: String):
num-pens * (0.25 + (string-length(message) * 0.02))

end

Of course, as things get too long, it may be helpful to use multiple lines:

fun pen-cost(num-pens :: Number,
message :: String)

-> Number:
num-pens * (0.25 + (string-length(message) * 0.02))

end

If you want to write a multi-line docstring, you need to use “‘ rather than " to
begin and end it, like so:

fun pen-cost(num-pens :: Number,
message :: String)

-> Number:
doc: ‘‘‘total cost for pens, each 25 cents
plus 2 cents per message character‘‘‘
num-pens * (0.25 + (string-length(message) * 0.02))

end

We should also document the examples that we used when creating the function:

https://en.wikipedia.org/wiki/Decimal_separator
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fun pen-cost(num-pens :: Number,
message :: String)

-> Number:
doc: ‘‘‘total cost for pens, each 25 cents

plus 2 cents per message character‘‘‘
num-pens * (0.25 + (string-length(message) * 0.02))

where:
pen-cost(3, "wow")

is 3 * (0.25 + (string-length("wow") * 0.02))
pen-cost(10, "smile")

is 10 * (0.25 + (string-length("smile") * 0.02))
end

When writing where examples, we also want to include special yet valid cases
that the function might have to handle, such as an empty message.

pen-cost(5, "") is 5 * 0.25
Note that our empty-message example has a simpler expression on the right side of
is. The expression for what the function returns doesn’t have to match the body
expression; it simply has to evaluate to the same value as you expect the example
to produce. Sometimes, we’ll find it easier to just write the expected value directly.
For the case of someone ordering no pens, for example, we’d include:

pen-cost(0, "bears") is 0
For the time being, we won’t worry about nonsensical situations like negative num-
bers of pens.

Do Now!

We could have combined our two special cases into one example, such as

pen-cost(0, "") is 0
Does doing this seem like a good idea? Why or why not?
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Chapter 6

Conditionals and Booleans

6.1 Motivating Example: Shipping Costs

In section 5.5, we wrote a program (pen-cost) to compute the cost of ordering
pens. Continuing the example, we now want to account for shipping costs. We’ll
determine shipping charges based on the cost of the order.

Specifically, we will write a function add-shipping to compute the total
cost of an order including shipping. Assume an order valued at $10 or less ships
for $4, while an order valued above $10 ships for $8. As usual, we will start by
writing examples of the add-shipping computation.

Do Now!

Use the is notation from where blocks to write several examples of add-shipping.
How are you choosing which inputs to use in your examples? Are you pick-
ing random inputs? Being strategic in some way? If so, what’s your strategy?

Here is a proposed collection of examples for add-shipping.

add-shipping(10) is 10 + 4
add-shipping(3.95) is 3.95 + 4
add-shipping(20) is 20 + 8
add-shipping(10.01) is 10.01 + 8

Do Now!

What do you notice about our examples? What strategies do you observe
across our choices?

Our proposed examples feature several strategic decisions:

53
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• Including 10, which is at the boundary of charges based on the text

• Including 10.01, which is just over the boundary

• Including both natural and real (decimal) numbers

• Including examples that should result in each shipping charge mentioned in
the problem (4 and 8)

So far, we have used a simple rule for creating a function body from examples:
locate the parts that are changing, replace them with names, then make the names
the parameters to the function.

Do Now!

What is changing across our add-shipping examples? Do you notice
anything different about these changes compared to the examples for our
previous functions?

Two things are new in this set of examples:

• The values of 4 and 8 differ across the examples, but they each occur in
multiple examples.

• The values of 4 and 8 appear only in the computed answers—not as an input.
Which one we use seems to depend on the input value.

These two observations suggest that something new is going on with add-shipping.
In particular, we have clusters of examples that share a fixed value (the shipping
charge), but different clusters (a) use different values and (b) have a pattern to their
inputs (whether the input value is less than or equal to 10). This calls for being
able to ask questions about inputs within our programs.

6.2 Conditionals: Computations with Decisions

To ask a question about our inputs, we use a new kind of expression called an if
expression. Here’s the full definition of add-shipping:

fun add-shipping(order-amt :: Number) -> Number:
doc: "add shipping costs to order total"
if order-amt <= 10:
order-amt + 4

else:
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order-amt + 8
end

where:
add-shipping(10) is 10 + 4
add-shipping(3.95) is 3.95 + 4
add-shipping(20) is 20 + 8
add-shipping(10.01) is 10.01 + 8

end

In an if expression, we ask a question that can produce an answer that is true or
false (here order-amt <= 10, which we’ll explain below in section 6.3), pro-
vide one expression for when the answer to the question is true (order-amt + 4),
and another for when the result is false (order-amt + 8). The else in the pro-
gram marks the answer in the false case; we call this the else clause. We also need
end to tell Pyret we’re done with the question and answers.

6.3 Booleans

Every expression in Pyret evaluates in a value. So far, we have seen three types of
values: Number, String, and Image. What type of value does a question like
order-amt <= 10 produce? We can use the interactions prompt to experiment
and find out.

Do Now!

Enter each of the following expressions at the interactions prompt. What type
of value did you get? Do the values fit the types we have seen so far?

3.95 <= 10
20 <= 10

The values true and false belong to a new type in Pyret, called Boolean. Named for George Boole.

While there are an infinitely many values of type Number, there are only two of
type Boolean: true and false.

Exercise

Explain why numbers and strings are not good ways to express the answer to
a true/false question.

https://en.wikipedia.org/wiki/George_Boole
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Exercise

Why did we not enter order-amt <= 10 at the interactions prompt to
explore booleans?

6.3.1 Other Boolean Operations

There are many other built-in operations that return Boolean values. Comparing
values for equality is a common one:There is much more we can and

should say about equality,
which we will do later
[section 19.1].

››› 1 == 1

true

››› 1 == 2

false

››› "cat" == "dog"

false

››› "cat" == "CAT"

false
In general, == checks whether two values are equal. Note this is different from

the single = used to associate names with values in the directory.
The last example is the most interesting: it illustrates that strings are case-

sensitive, meaning individual letters must match in their case for strings to be con-
sidered equal.This will become relevant when

we get to tables later. Sometimes, we also want to compare strings to determine their alphabetical
order. Here are several examples:

››› "a" < "b"

true
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››› "a" >= "c"

false

››› "that" < "this"

true

››› "alpha" < "beta"

true
which is the alphabetical order we’re used to; but others need some explaining:

››› "a" >= "C"

true

››› "a" >= "A"

true
These use a convention laid down a long time ago in a system called ASCII. Things get far more

complicated with non-ASCII
letters: e.g., Pyret thinks "Ł" is
> than "Z", but in Polish, this
should be false. Worse, the
ordering depends on location
(e.g., Denmark/Norway vs.
Finland/Sweden).

Do Now!

Can you compare true and false? Try comparing them for equality (==),
then for inequality (such as <).

In general, you can compare any two values for equality (almost; if you’re
on top of everything and want to read something more challenging, look at sec-
tion 21.6.3); for instance:

››› "a" == 1

false
If you want to compare values of a specific kind, you can use more specific opera-
tors:

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Alphabetical_order
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››› num-equal(1, 1)

true

››› num-equal(1, 2)

false

››› string-equal("a", "a")

true

››› string-equal("a", "b")

false
Why use these operators instead of the more generic ==?

Do Now!

Try

num-equal("a", 1)
string-equal("a", 1)

Therefore, it’s wise to use the type-specific operators where you’re expecting
the two arguments to be of the same type. Then, Pyret will signal an error if you go
wrong, instead of blindly returning an answer (false) which lets your program
continue to compute a nonsensical value.

There are even more Boolean-producing operators, such as:

››› wm = "will.i.am"

››› string-contains(wm, "will")

true
Note the capital W.
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››› string-contains(wm, "Will")

false
In fact, just about every kind of data will have some Boolean-valued operators to
enable comparisons.

6.3.2 Combining Booleans

Often, we want to base decisions on more than one Boolean value. For instance,
you are allowed to vote if you’re a citizen of a country and you are above a certain
age. You’re allowed to board a bus if you have a ticket or the bus is having a
free-ride day. We can even combine conditions: you’re allowed to drive if you
are above a certain age and have good eyesight and—either pass a test or have a
temporary license. Also, you’re allowed to drive if you are not inebriated.

Corresponding to these forms of combinations, Pyret offers three main opera-
tions: and, or, and not. Here are some examples of their use:

››› (1 < 2) and (2 < 3)

true

››› (1 < 2) and (3 < 2)

false

››› (1 < 2) or (2 < 3)

true

››› (3 < 2) or (1 < 2)

true
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››› not(1 < 2)

false

6.4 Asking Multiple Questions

Shipping costs are rising, so we want to modify the add-shipping program to
include a third shipping level: orders between $10 and $30 ship for $8, but orders
over 30 ship for $12. This calls for two modifications to our program:

• We have to be able to ask another question to distinguish situations in which
the shipping charge is 8 from those in which the shipping charge is 12.

• The question for when the shipping charge is 8 will need to check whether
the input is between two values.

We’ll handle these in order.
The current body of add-shipping asks one question: order-amt <= 10.

We need to add another one for order-amt <= 30, using a charge of 12 if that
question fails. Where do we put that additional question?

An expanded version of the if-expression, using else if, allows you to ask
multiple questions:

fun add-shipping(order-amt :: Number) -> Number:
doc: "add shipping costs to order total"
if order-amt <= 10:
order-amt + 4

else if order-amt <= 30:
order-amt + 8

else:
order-amt + 12

end
where:

...
end
At this point, you should also add where examples that use the 12 charge.

How does Pyret determine which answer to return? It evaluates each question
expression in order, starting from the one that follows if. It continues through the
questions, returning the value of the answer of the first question that returns true.
Here’s a summary of the if-expression syntax and how it evaluates.
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if <Boolean expression to check>:
<expression if first expression is true>

else if <another Boolean expression to check>:
<expression if first expression is false and second expression is true>

else:
<expression if both expressions are false>

end

A program can have multiple if else cases, thus accommodating an arbitrary
number of questions within a program.

Do Now!

The problem description for add-shipping said that orders between 10
and 30 should incur an 8 charge. How does the above code capture “be-
tween”?

This is currently entirely implicit. It depends on us understanding the way a if
evaluates. The first question is order-amt <= 10, so if we continue to the sec-
ond question, it means order-amt > 10. In this context, the second question
asks whether order-amt <= 30. That’s how we’re capturing “between”-ness.

Do Now!

How might you modify the above code to build the “between 10 and 30”
requirement explicitly into the question for the 8 case?

Remember the and operator on booleans? We can use that to capture “be-
tween” relationships, as follows:

(order-amt > 10) and (order-amt < 30)

Do Now!

Why are there parentheses around the two comparisons? If you replace
order-amt with a concrete value (such as 20) and leave off the paren-
thesis, what happens when you evaluate this expression in the interactions
window?

Here is what add-shipping look like with the and included:

fun add-shipping(order-amt :: Number) -> Number:
doc: "add shipping costs to order total"
if order-amt <= 10:
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order-amt + 4
else if (order-amt > 10) and (order-amt < 30):

order-amt + 8
else:

order-amt + 12
end

where:
add-shipping(10) is 10 + 4
add-shipping(3.95) is 3.95 + 4
add-shipping(20) is 20 + 8
add-shipping(10.01) is 10.01 + 8
add-shipping(30) is 30 + 12

end

Both versons of add-shipping support the same examples. Are both cor-
rect? Yes. And while the first part of the second question (order-amt > 10) is
redundant, it can be helpful to include such conditions for three reasons:

1. They signal to future readers (including ourselves!) the condition covering a
case.

2. They ensure that if we make a mistake in writing an earlier question, we
won’t silently get surprising output.

3. They guard against future modifications, where someone might modify an
earlier question without realizing the impact it’s having on a later one.

6.5 Evaluating by Reducing Expressions

In section 5.2.1, we talked about how Pyret reduces expressions and function calls
to values. Let’s revisit this process, this time expanding to consider if-expressions.
Suppose we want to compute the wages of a worker. The worker is paid $10 for
every hour up to the first 40 hours, and is paid $15 for every extra hour. Let’s say
hours contains the number of hours they work, and suppose it’s 45:

hours = 45
Suppose the formula for computing the wage is

if hours <= 40:
hours * 10

else if hours > 40:
(40 * 10) + ((hours - 40) * 15)
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end

Let’s now see how this results in an answer, using a step-by-step process that
should match what you’ve seen in algebra classes: The first step is to substitute the

hours with 45.
if 45 <= 40:

45 * 10
else if 45 > 40:

(40 * 10) + ((45 - 40) * 15)
end

Next, the conditional part of the
if expression is evaluated,
which in this case is false.=> if false:

45 * 10
else if 45 > 40:

(40 * 10) + ((45 - 40) * 15)
end

Since the condition is false,
the next branch is tried.=> if false:

45 * 10
else if true:

(40 * 10) + ((45 - 40) * 15)
end

Since the condition is true,
the expression reduces to the
body of that branch. After that,
it’s just arithmetic.

=> (40 * 10) + ((45 - 40) * 15)

=> 400 + (5 * 15)
=> 475

This style of reduction is the best way to think about the evaluation of Pyret
expressions. The whole expression takes steps that simplify it, proceeding by sim-
ple rules. You can use this style yourself if you want to try and work through the
evaluation of a Pyret program by hand (or in your head).

6.6 Wrapping up: Composing Functions

We started this chapter wanting to account for shipping costs on an order of pens.
So far, we have written two functions:

• pen-cost for computing the cost of the pens

• add-shipping for adding shipping costs to a total amount
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What if we now wanted to compute the price of an order of pens including
shipping? We would have to use both of these functions together, sending the
output of pen-cost to the input of add-shipping.

Do Now!

Write an expression that computes the total cost, with shipping, of an order
of 10 pens that say "bravo".

There are two ways to structure this computation. We could pass the result of
pen-cost directly to add-shipping:

add-shipping(pen-cost(10, "wow!"))
Alternatively, you might have named the result of pen-cost as an intermedi-

ate step:

pens = pen-cost(10, "wow!")
add-shipping(pens)

Both methods would produce the same answer.

Exercise

Manually evaluate each version. Where are the sequences of evaluation steps
the same and where do they differ across these two programs?
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Introduction to Tabular Data

Many interesting data in computing are tabular—i.e., like a table—in form. First
we’ll see a few examples of them, before we try to identify what they have in
common. Here are some of them:

• An email inbox is a list of messages. For each message, your inbox stores a
bunch of information: its sender, the subject line, the conversation it’s part
of, the body, and quite a bit more.

• A music playlist. For each song, your music player maintains a bunch of
information: its name, the singer, its length, its genre, and so on.

• A filesystem folder or directory. For each file, your filesystem records a
name, a modification date, size, and other information.

Do Now!

Can you come up with more examples?
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How about:

• Responses to a party invitation.

• A gradebook.

• A calendar agenda.

You can think of many more in your life!
What do all these have in common? The characteristics of tabular data are:

• They consists of rows and columns. For instance, each song or email mes-
sage or file is a row. Each of their characteristics—the song title, the message
subject, the filename—is a column.

• Each row has the same columns as the other rows, in the same order.

• A given column has the same type, but different columns can have different
types. For instance, an email message has a sender’s name, which is a string;
a subject line, which is a string; a sent date, which is a date; whether it’s been
read, which is a Boolean; and so on.

• The rows are usually in some particular order. For instance, the emails are
ordered by which was most recently sent.

Exercise

Find the characteristics of tabular data in the other examples described above,
as well as in the ones you described.

We will now learn how to program with tables and to think about decomposing
tasks involving them.You can also look up the full

Pyret documentation for table
operations.

7.1 Creating Tabular Data

Pyret provides multiple easy ways of creating tabular data. The simplest is to define
the datum in a program as follows:

table: name, age
row: "Alice", 30
row: "Bob", 40
row: "Carol", 25

end

https://www.pyret.org/docs/latest/tables.html
https://www.pyret.org/docs/latest/tables.html
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That is, a table is followed by the names of the columns in their desired order,
followed by a sequence of rows. Each row must contain as many data as the
column declares, and in the same order.

Exercise

Change different parts of the above example—e.g., remove a necessary value
from a row, add an extraneous one, remove a comma, add an extra comma,
leave an extra comma at the end of a row—and see what errors you get.

Note that in a table, the order of columns matters: two tables that are otherwise
identical but with different column orders are not considered equal.

check:
table: name, age

row: "Alice", 30
row: "Bob", 40
row: "Carol", 25

end
is-not
table: age, name

row: 30, "Alice"
row: 40, "Bob"
row: 25, "Carol"

end
end

Observe that the example above uses is-not, i.e., the test passes, meaning that
the tables are not equal.

Table expressions create table values. These can be stored in variables just like
numbers, strings, and images:

people = table: name, age
row: "Alice", 30
row: "Bob", 40
row: "Carol", 25

end

We call these literal tables when we create them with table. Pyret provides
other ways to get tabular data, too! In particular, you can import tabular data from
a spreadsheet, so any mechanism that lets you create such a sheet can also be used.
You might:

• create the sheet on your own,

https://www.pyret.org/docs/latest/gdrive-sheets.html
https://www.pyret.org/docs/latest/gdrive-sheets.html
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• create a sheet collaboratively with friends,

• find data on the Web that you can import into a sheet,

• create a Google Form that you get others to fill out, and obtain a sheet out of
their responses

and so on. Let your imagination run wild! Once the data are in Pyret, the language
doesn’t care where they came from.

7.2 Processing Rows

Let’s now learn how we can actually process a table. Pyret offers a variety of
built-in operations that make it quite easy to perform interesting computations over
tables. In addition, as we will see later [chapter 8], if we don’t find these sufficient,
we can write our own. For now, we’ll focus on the operations Pyret provides.

Let’s think about some of the questions we might want to ask about our data:

• Which emails were sent by a particular user?

• Which songs were sung by a particular artist?

• Which are the most frequently played songs in a playlist?

• Which are the least frequently played songs in a playlist?

We see that some of these correspond to keeping some rows and some correspond
to ordering them. Pyret provides tabular operations corresponding to these.

7.2.1 Keeping
Some of us have many more
messages in our inbox! Let’s imagine we had a table that represented our inbox:

email = table: sender, recipient, subject
row: ’Matthias Felleisen’, ’Pedro Diaz’, ’Introduction’
row: ’Joe Politz’, ’Pedro Diaz’, ’Class on Friday’
row: ’Matthias Felleisen’, ’Pedro Diaz’, ’Book comments’
row: ’Mia Minnes’, ’Pedro Diaz’, ’CSE8A Midterm’

end

and we wanted to get a table of just the messages from Matthias.
We can keep rows from a table as follows:
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sieve email using sender:
sender == ’Matthias Felleisen’

end

says to use the email table, and specifically to employ the sender column. This
operation processes every row of the table. In each row, sender refers to the
value of the sender column of that row. The expression in the body (between :
and end) must evaluate to a Boolean; if it is true, then Pyret keeps that row in
the resulting table, otherwise it is discarded. The outcome of running this query is
a fresh table with the same columns but only some (perhaps as few as none) of the
rows; those rows that remain will be in the same order as in the original table.

In the same way, we can keep rows based on the artist:

sieve playlist using artist:
(artist == ’Deep Purple’) or (artist == ’Van Halen’)

end

This shows that we can write complex expressions to select rows.

Exercise

Write a table for to use as playlist that works with the sieve expression
above.

Exercise

Write a sieve expression on the email table above that would result in a
table with zero rows.

7.2.2 Ordering

We can similarly order the rows of a table, which produces a new table that has the
rows in the described order:

order playlist:
play-count ascending

end

orders the rows with the play-count values in ascending order, so that the ear-
liest rows in the table tell us which songs we’ve listened to least frequently.

Note that what goes between the : and end is not an expression. Therefore, we
cannot write arbitrary code here. We can only name columns and indicate which
way they should be ordered.



70 CHAPTER 7. INTRODUCTION TO TABULAR DATA

7.2.3 Combining Keeping and Ordering

Naturally, we are not limited to performing only one of these operations. Since
each of them consumes a table and produces one, we can easily combine them.
Let’s first think of what we might want to do in English:

• Of the emails from a particular person, which is the oldest?

• Of the songs by a particular artist, which have we played the least often?

Do Now!

Take a moment to think about how you would write these with what you have
seen so far.

Here is the first example:

mf-emails = sieve email using sender:
sender == ’Matthias Felleisen’

end
order mf-emails:
sent-date ascending

end

Note that in the order expression, we order not email, which is the table of
all emails, but only mf-email, the table of just the emails from that one sender.
Now, looking at the earliest rows in the result gives us the earliest emails from that
one person.

Exercise

Write the second example as a composition of keep and order operations
on a playlist table.

7.2.4 Extending

Sometimes, we want to create a new column whose value is based on those of ex-
isting columns. For instance, our table might reflect employee records, and have
columns named hourly-wage and hours-worked, representing the corre-
sponding quantities. We would now like to extend this table with a new column to
reflect each employee’s total wage:

extend employees using hourly-wage, hours-worked:
total-wage: hourly-wage * hours-worked

end
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This creates a new column, total-wage, whose value in each row is the product
of the two named columns in that row. Pyret will put the new column at the right
end; as we will soon see, we can easily change the order of columns [section 7.2.6].

Naturally, we can combine extension with other table operations. For instance,
we might have noticed that messages with short subject lines usually don’t contain
high-priority tasks. Therefore, we might first extend the email table with the length
of the subject line:

ext-email = extend email using subject:
subject-length: string-length(subject)

end
order ext-email:
subject-length descending

end
This will create a table where the longest subject lines are at the top and the shortest
subject lines are at the bottom.

7.2.5 Transforming, Cleansing, and Normalizing

There are times when a table is “almost right”, but requires a little adjusting. For
instance, we might have a table of customer requests for a free sample, and want
to limit each customer to at most a certain number. We might get temperature
readings from different countries in different formats, and want to convert them
all to one single format. We might have a gradebook where different graders have Because unit errors can be

dangerous!used different levels of precision, and want to standardize all of them to have the
same level of precision.

In all these cases, we want the resulting table to have the same “shape” as the
original—the same columns, the same rows, in the same order—but with some of
the column values transformed slightly. Pyret provides transform to do this.
For instance, here is how we limit customer orders:

transform orders using count:
count: num-min(count, 3)

end
Here’s how we round the total grades:

transform gradebook using total-grade:
total-grade: num-round(total-grade)

end
Of course, a transformation can involve columns other than the one being trans-
formed, and can transform multiple columns:

http://mentalfloss.com/article/25845/quick-6-six-unit-conversion-disasters
http://mentalfloss.com/article/25845/quick-6-six-unit-conversion-disasters
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transform weather using temp, unit:
temp:

if unit == "F":
fahrenheit-to-celsius(temp)

else:
temp

end,
unit:

if unit == "F":
"C"

else:
unit

end
end

This alters the table so that all temperatures are converted to celsius.

Do Now!

In this example, why do we also transform unit?

It’s because we should keep the temperature and unit in sync. If we transform
the temperature but not the unit, a later user of this table might assume the unit
column is accurate, and accidentally treat the converted temperature as if it were
still in Fahrenheit.

7.2.6 Selecting

Finally, for presentation purposes, it is sometimes useful to see just a few of the
columns, especially in tables with many of them; it can also be helpful to change
the order of columns so that items that are meant to be viewed together are made
adjacent. Suppose our gradebook has numerous columns representing all the inter-
mediate scores, at the end of which is the total; when we’re done assigning grades,
we want to see each student’s name with just their final score:

select name, total-grade from gradebook end

Again, we can combine this operation with others. For instance, we may want to
see just the artists and songs in our playlist, sorted in order by the artist’s name:

ss = select artist, song from playlist end
order ss:
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artist ascending
end

7.2.7 Summary of Row-Wise Table Operations

We’ve seen a lot in a short span. Specifically, we have seen several operations that
consume a table and produce a new one according to some criterion. It’s worth
summarizing the impact each of them has in terms of key table properties (where
“-” means the entry is left unchanged):
Operation Cell contents Row order Number of rows Column order Number of columns
Keeping - - reduced - -
Ordering - changed - - -
Extending existing unchanged, new computed - - - augmented
Transforming altered - - - -
Selecting - - - changed reduced

The italicized entries reflect how the new table may differ from the old. Note
that an entry like “reduced” or “altered” should be read as potentially reduced or
altered; depending on the specific operation and the content of the table, there may
be no change at all. (For instance, if a table is already sorted according to the
criterion given in an order expression, the row order will not change.) However,
in general one should expect the kind of change described in the above grid.

Observe that both dimensions of this grid provide interesting information. Un-
surprisingly, each row has at least some kind of impact on a table (otherwise the
operation would be useless and would not exist). Likewise, each column also has
at least one way of impacting it. Furthermore, observe that most entries leave the
table unchanged: that means each operation has limited impact on the table, careful
to not overstep the bounds of its mandate.

On the one hand, the decision to limit the impact of each operation means that
to achieve complex tasks, we may have to compose several operations together.
We have already seen examples of this earlier this chapter. However, there is also
a much more subtle consequence: it also means that to achieve complex tasks, we
can compose several operations and get exactly what we want. If we had fewer
operations that each did more, then composing them might have various undesired
or (worse) unintended consequences, making it very difficult for us to obtain ex-
actly the answer we want. Instead, the operations above follow the principle of
orthogonality: no operation shadows what any other operation does, so they can be
composed freely.

As a result of having these operations, we can think of tables also algebrically.
Concretely, when given a problem, we should again begin with concrete examples
of what we’re starting with and where we want to end. Then we can ask ourselves
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questions like, “Does the number of columns stay the same, grow, or shrink?”,
“Does the number of rows stay the same or shrink?”, and so on. The grid above now
provides us a toolkit by which we can start to decompose the task into individual
operations. Of course, we still have to think: the order of operations matters, and
sometimes we have to perform an operation mutiple times. Still, this grid is a
useful guide to hint us towards the operations that might help solve our problem.



Chapter 8

From Tables to Lists

Previously [chapter 7] we began to process collective data in the form of tables.
Though we saw several powerful operations that let us quickly and easily ask so-
phisticated questions about our data, they all had two things in commmon. First, all
were operations by rows. None of the operations asked questions about an entire
column at a time. Second, all the operations not only consumed but also produced
tables. However, we already know [chapter 3] there are many other kinds of data,
and sometimes we will want to compute one of them. We will now see how to
achieve both of these things, introducing an important new type of data in the pro-
cess.

8.1 Basic Statistical Questions

There are many more questions we might want to ask of our data. For instance:

• The most-played song in a playlist, which translates to the maximum value
in a column of play counts.

• The largest file in a filesystem, which translates to the maximum value in a
column of file sizes.

• The shortest person in a table of people, which translates to the smallest
value in a column of heights.

• The number of songs in a playlist. (This is arguably a question about all
the columns combined, not any one specific column, since they all have the
same number of entries.)
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• All the distinct entries in the play-counts column. (This, naturally, is a ques-
tion about a specific column, because the number of distinct entries will
differ depending on the column.)

• The number of distinct entries in the play-counts column.

• The average in a column of wages.

• Other statistics (the median, mode, standard deviation, etc.) in a column of
heights.

Notice the kinds of operations that we are talking about: computing the maximum,
minimum, average, median, and other basic statistics.Pyret has several built-in

statistics functions in the math
and statistics packages. Do Now!

Think about whether and how you would express these questions with the
operations you have already seen.

8.2 Extracting a Column from a Table

Hopefully you found select attractive, because it gives us a column in isolation:
e.g.,

songs = table: title, artist, play-count
row: "Harry Styles", "Adore You", 0
row: "Blinding Lights", "The Weeknd", 5
row: "Memories", "Maroon 5", 97
row: "The Box", "Roddy Ricch", 25

end
select play-count from songs end

But in the end we’re still stuck with a column in a table, and none of the other
operations let us compute the answers we’re looking for. Therefore, there is no
(straightforward) way to express these questions at all, because they require us to
be perform a computation looking at the values of a table relative to one another,
rather than in isolation.

In principle, we could have a collection of operations on a single column. In
some languages that focus solely on tables, such as SQL, this is what you’ll find.
However, in Pyret we have many more kinds of data than just columns (as we’ll
soon see [chapter 10], we can even create our own!), so it makes sense to leave the
gentle cocoon of tables sooner or later. An extracted column is a more basic kind

http://www.pyret.org/docs/latest/math.html
http://www.pyret.org/docs/latest/statistics.html
https://en.wikipedia.org/wiki/SQL
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of datum called a list, which can be used to represent data in programs without the
bother of having to create a table every single time.

Therefore, we introduce one more operation, extract, which takes a column
name and gives just the content of that one column:

extract play-count from songs end

And now we can answer the critical question—what is the difference between
select and extract—by saying that while select produces a table, extract
produces a list.

8.3 Understanding Lists

A list has much in common with a single-column table:

• The elements have an order, so it makes sense to talk about the “first”, “sec-
ond”, “last”—and so on—element of a list.

• All elements of a list are expected to have the same type.

The crucial difference is that a list does not have a “column name”; it is anonymous.
That is, by itself a list does not describe what it represents; this interpretation is
done by our program.

8.3.1 Lists as Anonymous Data

This might sound rather abstract—and it is—but this isn’t actually a new idea in
our programming experience. Consider a value like 3 or -1: what is it? It’s the
same sort of thing: an anonymous value that does not describe what it represents;
the interpretation is done by our program. In one setting 3 may represent an age, in
another a play count; in one setting -1may be a temperature, in another the average
of several temperatures. Similarly with a string: Is "project" a noun (an activity
that one or more people perform) or a verb (as when we display something on a
screen)? Likewise with images and so on. In fact, tables have been the exception
so far in having description built into the data rather than being provided by a
program!

This genericity is both a virtue and a problem. Because, like other anonymous
data, a list does not provide any interpretation of its use, if we are not careful we
can accidentally mis-interpret the values. On the other hand, it means we can use
the same datum in several different contexts, and one operation can be used in
many settings.
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Indeed, if we look at the list of questions we asked earlier, we see that there
are several common operations—maximum, minimum, average, and so on—that
can be asked of a list of values without regard for what the list represents (heights,
ages, playcounts). In fact, some are specific to numbers (like average) while some
(like maximum) can be asked of any type on which we can perform a comparison
(like strings).

8.3.2 Creating Literal Lists

We have already seen how we can create lists from a table, using extract. As
you might expect, however, we can also create lists directly:

[list: 1, 2, 3]
[list: -1, 5, 2.3, 10]
[list: "a", "b", "c"]
[list: "This", "is", "a", "list", "of", "words"]
Of course, lists are values so we can name them using variables—

shopping-list = [list: "muesli", "fiddleheads"]
—pass them to functions (as we will soon see), and so on.

Do Now!

Based on these examples, can you figure out how to create an empty list?

As you might have guessed, it’s [list: ] (the space isn’t necessary, but it’s
a useful visual reminder of the void).

8.4 Operating on Lists

8.4.1 Built-In Operations on Lists

Pyret handily provides a useful set of operations we can already perform on lists.
As you might have guessed, we can already compute most of the answers we’ve
asked for above. First we need to include some libraries that contain useful func-
tions:

include math
include statistics
We can then access several useful functions:

• max computes the maximum element of a list.
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• min computes the minimum element of a list.

• mean computes the average of a list.

• stdev computes the standard deviation of the values in list.

Thus:

pcs = extract play-count from songs end
most-played-count = max(pcs)
least-played-count = min(pcs)
would compute the highest and lowest play count from a table of songs.

Similarly, we could get the tallest and shortest heights from a table of people:

hts = extract height from people end
tallest-height = max(hts)
shortest-height = min(hts)

Exercise

Design a table that has three people and would produce 78 and 42 for
the tallest-height and shortest-height with the example code
above.

8.4.2 Combining Lists and Tables

Note that the questions we originally asked were slightly different: we didn’t ask
for the tallest height but the tallest person, or likewise the most most-played song.
Because we’ve stripped the heights and counts of their surrounding context, we
can no longer tell which person or song these values correspond to. For that, we
have to go back to the table.

Do Now!

Do you see how we can use the values above, like most-played-count
or shortest-height, to obtain the corresponding songs or people?

The key is to write a query over the corresponding table that refers to this value.
For instance:

most-played-songs = sieve songs using play-count:
play-count == most-played-count

end
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tallest-people = sieve people using height:
height == tallest-height

end

There’s a reason we are careful to always use the plural—people, songs—
rather than the singular. This is because we cannot be sure there is only one person
or one song with this height or play count. That is, there is a single biggest or
smallest value in the list, because the value has no other information about it (so
the same height coming from two different people, or the same play count coming
from two different songs, looks the same in the list). But when put back in the
context of the original table, the other values may be different.

In short, our overall answer is computed quite simply:

pcs = extract play-count from songs end
most-played-count = max(pcs)
sieve songs using play-count:

play-count == most-played-count
end

and

hts = extract height from people end
tallest-height = max(hts)
sieve people using height:

height == tallest-height
end

Exercise

Implement all the other statistical questions posed in section 8.1.

Until now we’ve only seen how to use built-in functions over lists. Next [chap-
ter 9], we will study how to create our own functions that process lists. Once we
learn that, these list processing functions will remain powerful but will no longer
seem quite so magical, because we’ll be able to build them for ourselves!



Chapter 9

Processing Lists

We have already seen [chapter 8] several examples of list-processing functions.
They have been especially useful for advanced processing of tables. However, lists
arise frequently in programs, and they do so naturally because so many things in
our lives—from shopping lists to to-do lists to checklists—are naturally lists. As
we already briefly discussed earlier [section 8.3.1],

• some list functions are generic and operate on any kind of list: e.g., the
length of a list is the same irrespective of what kind of values it contains;

• some are specific at least to the type of data: e.g., the sum assumes that all the
values are numbers (though they may be ages or prices or other information
represented by numbers); and

• some are somewhere in-between: e.g., a maximum function applies to any
list of comparable values, such as numbers or strings.

This seems like a great variety, and we might worry about how we can handle
this many different kinds of functions. Fortunately, and perhaps surprisingly, there
is one standard way in which we can think about writing all these functions! Our
mission is to understand and internalize this process.

9.1 Making Lists and Taking Them Apart

So far we’ve seen one way to make a list: by writing [list: ...]. While
useful, writing lists this way actually hides their true nature. Every list actually has
two parts: a first element and the rest of the list. The rest of the list is itself a list,
so it too has two parts. . . and so on.
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Consider the list [list: 1, 2, 3]. Its head is 1, and the rest of it is
[list: 2, 3]. For this second list, the head is 2 and the rest is [list: 3].

Do Now!

Take apart this third list.

For the third list, the head is 3 and the rest is [list: ], i.e., the empty list. In
Pyret, we have another way of writing the empty list: empty.

Here, we’ve taken the lists apart manually. Naturally, Pyret has operations that
let us do that. Lists are an instance of structured data, and in general there are two
ways to take apart structured data: using cases, which we will see below, and
using accessors. A list has two accessors: first and rest. We use an accessor
by writing an expression, followed by a dot (.), followed by the accessor’s name.
Thus:

l1 = [list: 1, 2, 3]
h1 = l1.first
l2 = l1.rest
h2 = l2.first
l3 = l2.rest
h3 = l3.first
l4 = l3.rest

check:
h1 is 1
h2 is 2
h3 is 3
l2 is [list: 2, 3]
l3 is [list: 3]
l4 is empty

end

Thus, .first and .rest give us a way to take apart a list. Can we also
put together a list piece-by-piece? This would be especially useful for building up
a list. And indeed we can: the function (called a constructor) that makes lists is
called link. It takes two arguments: a list element, and the rest of the list. Thus,
l1 above is equivalent to a series of links followed by empty:

check:
[list: 1, 2, 3] is link(1, link(2, link(3, empty)))

end
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Obviously, writing the link form is not very convenient to humans. But it will
prove very valuable to programs!

Observe, in summary, that broadly speaking we have two kinds of lists. Some
lists are empty. All other lists are non-empty lists, meaning they have at least one
link. There may be more interesting structure to some lists, but all lists have this
much in common. Specifically, a list is either

• empty (written empty or [list: ]), or

• non-empty (written link(..., ...) or [list: ] with at least one
value inside the brackets), where the rest is also a list (and hence may in
turn be empty or non-empty, . . . ).

9.2 Some Example Exercises

To illustrate our thinking, let’s work through a few concrete examples of list-
processing functions. All of these will consume lists; some will even produce
them. Since some of these functions already exist in Pyret, we’ll name them with
the prefix my- to avoid errors. Be sure to use the my- name

consistently, including inside
the body of the function.• Compute the length of a list:

my-len :: List<Any> -> Number

• Compute the sum of a list (of numbers):

my-sum :: List<Number> -> Number

• Compute the maximum of a list (of numbers or strings):

my-max :: List<Any> -> Any

• Given a list of strings, convert each string to a number representing its length:

my-str-len :: List<String> -> List<Number>

• Given a list of numbers, generate a list of its positive numbers: If you want to be pedantic: its
positive numbers with the same
count and in the same order.my-pos-nums :: List<Number> -> List<Number>
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• Given a list of numbers, replace every element with the running sum, i.e.,
the sum of all the elements from the beginning of the list until that element
(inclusive):

my-running-sum :: List<Number> -> List<Number>

• Given a list, keep every alternate element in it, starting from the first:

my-alternating :: List<Any> -> List<Any>

• Given a list of numbers, compute the average of the numbers:

my-avg :: List<Number> -> List<Number>

To solve problems like this, there are two things we should do:

• Construct examples of the function’s behavior.

• Employ the template that suggests possible solutions.

Both steps sound simple but have several nuances, which we will explore.

9.3 Structural Problems with Scalar Answers

Let’s write out examples for a few of the functions described above. We’ll ap-
proach writing examples in a very specific, stylized way. First of all, we should
always construct at least two examples: one with empty and the other with at
least one link, so that we’ve covered the two very broad kinds of lists. Then, we
should have more examples specific to the kind of list stated in the problem. Fi-
nally, we should have even more examples to illustrate how we think about solving
the problem.

9.3.1 my-len: Examples

We have’t precisely defined what it means to be “the length” of a list. We confront
this right away when trying to write an example. What is the length of the list
empty?

Do Now!

What do you think?
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Two common examples are 0 and 1. The latter, 1, certainly looks reasonable.
However, if you write the list as [list: ], now it doesn’t look so right: this is
clearly (as the name empty also suggests) an empty list, and an empty list has zero
elements in it. Therefore, it’s conventional to declare that

my-len(empty) is 0
How about a list like [list: 7]? Well, it’s clearly got one element (7) in it, so

my-len([list: 7]) is 1
Similarly, for a list like [list: 7, 8, 9], we would say

my-len([list: 7, 8, 9]) is 3
Now let’s look at that last example in a different light. Consider the argument

[list: 7, 8, 9]. Its first element is 7 and the rest of it is [list: 8, 9].
Well, 7 is a number, not a list; but [list: 8, 9] certainly is a list, so we can
ask for its length. What is my-len([list: 8, 9])? It has two elements, so

my-len([list: 8, 9]) is 2
The first element of that list is 8 while its rest is [list: 9]. What is its
length? Note that we asked a very similar question before, for the length of the
list [list: 7]. But [list: 7] is not a sub-list of [list: 7, 8, 9],
which we started with, whereas [list: 9] is. And using the same reasoning as
before, we can say

my-len([list: 9]) is 1
The rest of this last list is, of course, the empty list, whose length we have already
decided is 0.

Putting together these examples, and writing out empty in its other form,
here’s what we get:

my-len([list: 7, 8, 9]) is 3
my-len([list: 8, 9]) is 2
my-len([list: 9]) is 1
my-len([list: ]) is 0
Another way we can write this (paying attention to the right side) is

my-len([list: 7, 8, 9]) is 1 + 2
my-len([list: 8, 9]) is 1 + 1
my-len([list: 9]) is 1 + 0
my-len([list: ]) is 0
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From this, maybe you can start to see a pattern. For an empty list, the length is
0. For a non-empty list, it’s the sum of 1 (the first element’s “contribution” to the
list’s length) to the length of the rest of the list. That is,

my-len([list: 7, 8, 9]) is 1 + my-len([list: 8, 9])
my-len([list: 8, 9]) is 1 + my-len([list: 9])
my-len([list: 9]) is 1 + my-len([list: ])
my-len([list: ]) is 0
That is, we can use the result of computing my-len on the rest of the list to
compute the answer for the entire list.

Double-check all these and make sure you understand the calculations. It’ll
prove central to how we write the program later!

9.3.2 my-sum: Examples

A similar logic applies to how we treat a function like my-sum. What do we want
the sum of the empty list to be? Well, it may be entirely clear, so let’s move on
for a moment. What is the sum of the list [list: 7, 8, 9]? Well, clearly we
intend for this to be 24. Let’s see how that works out.

Setting aside the empty list for a moment, here are sums we can agree upon:

my-sum([list: 7, 8, 9]) is 7 + 8 + 9
my-sum([list: 8, 9]) is 8 + 9
my-sum([list: 9]) is 9
which is the same as

my-sum([list: 7, 8, 9]) is 7 + my-sum([list: 8, 9])
my-sum([list: 8, 9]) is 8 + my-sum([list: 9])
my-sum([list: 9]) is 9 + my-sum([list: ])
From this, we can see that the sum of the empty list must be 0:Zero is called the additive

identity: a fancy way of saying,
adding zero to any number N
gives you N. Therefore, it
makes sense that it would be the
length of the empty list,
because the empty list has no
items to contribute to a sum.
Can you figure out what the
multiplicative identity is?

my-sum(empty) is 0
Observe, again, how we can use the result of computing my-sum of the rest of

the list to compute its result for the whole list.

9.3.3 From Examples to Code

Given these examples, we can now turn them into code. We introduce the construct
cases, which lets us tell apart different kinds of lists, and use it to provide answers
for each kind of list.

The grammar for cases for lists is as follows:
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cases (List) e:
| empty =>...
| link(f, r) =>...f...r...

end

where most parts are fixed, but a few you’re free to change:

• e is an expression whose value needs to be a list; it could be a variable bound
to a list, or some complex expression that evaluates to a list.

• f and r are names given to the first and rest of the list. You can choose any
names you like, though in Pyret, it’s conventional to use f and r.

The right-hand side of every => is an expression.
Here’s how cases works in this instance. Pyret first evaluates e. It then

checks that the resulting value truly is a list; otherwise it halts with an error. If it is a
list, Pyret examines what kind of list it is. If it’s an empty list, it runs the expression
after the => in the empty clause. Otherwise, the list is not empty, which means
it has a first and rest; Pyret binds f and r to the two parts, respectively, and then
evaluates the expression after the => in the link clause.

Exercise

Try using a non-list—e.g., a number—in the e position and see what hap-
pens!

Now let’s use cases to define my-len:

fun my-len(l):
cases (List) l:
| empty => 0
| link(f, r) => 1 + my-len(r)

end
end

This follows from our examples: when the list is empty my-len produces 0; when
it is not empty, we add one to the length of the rest of the list (here, r).

Similarly, let’s define my-sum:

fun my-sum(l):
cases (List) l:
| empty => 0
| link(f, r) => f + my-sum(r)

end
end
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Notice how similar they are in code, and how readily the structure of the data
suggest a structure for the program. This is a pattern you will get very used to
soon!

9.4 Structural Problems with List Answers

Now let’s tackle the functions that produce a list as the answer.

9.4.1 my-str-len: Examples and Code

As always, we’ll begin with some examples. Given a list of strings, we want the
lengths of each string (in the same order). Thus, here’s a reasonable example:

my-str-len([list: "hi", "there", "mateys"]) is [list: 2, 5, 6]
As we have before, we should consider how the answers for each sub-problem of
the above example:

my-str-len([list: "there", "mateys"]) is [list:
5, 6]
my-str-len([list: "mateys"]) is [list:
6]
Or, in other words:

my-str-len([list: "hi", "there", "mateys"]) is link(2, [list: 5, 6])
my-str-len([list: "there", "mateys"]) is link(5, [list:
6])
my-str-len([list: "mateys"]) is link(6, [list:
])
which tells us that the response for the empty list should be empty:

my-str-len(empty) is empty
Note that for brevity we’re written the answers of converting each string (2,

5, and 6), each of which we obtain by applying string-length to the first
element of the list at each point. Therefore, we can formulate a solution from this:

fun my-str-len(l):
cases (List) l:

| empty => empty
| link(f, r) =>

link(string-length(f), my-str-len(r))
end

end
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9.4.2 my-pos-nums: Examples and Code

Do Now!

Construct the sequence of examples that we obtain from the input [list: 1, -2, 3, -4].

Here we go:

my-pos-nums([list: 1, -2, 3, -4]) is [list: 1, 3]
my-pos-nums([list: -2, 3, -4]) is [list: 3]
my-pos-nums([list: 3, -4]) is [list: 3]
my-pos-nums([list: -4]) is [list: ]
my-pos-nums([list: ]) is [list: ]
We can write this in the following form:

my-pos-nums([list: 1, -2, 3, -4]) is link(1, [list: 3])
my-pos-nums([list: -2, 3, -4]) is [list: 3]
my-pos-nums([list: 3, -4]) is link(3, [list: ])
my-pos-nums([list: -4]) is [list: ]
my-pos-nums([list: ]) is [list: ]
or, even more explicitly,

my-pos-nums([list: 1, -2, 3, -4]) is link(1, my-pos-nums([list: -2, 3, -4]))
my-pos-nums([list: -2, 3, -4]) is my-pos-nums([list:
3, -4])
my-pos-nums([list: 3, -4]) is link(3, my-pos-nums([list:
-4]))
my-pos-nums([list: -4]) is my-pos-nums([list:
])
my-pos-nums([list: ]) is [list: ]
That is, when the first element is positive we link it into the result of computing
my-pos-nums on the rest of the list; when the first element is negative, the result
is just that of computing my-pos-nums on the rest of the list. This yields the
following program:

fun my-pos-nums(l):
cases (List) l:
| empty => empty
| link(f, r) =>
if f > 0:

link(f, my-pos-nums(r))
else:
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my-pos-nums(r)
end

end
end

Do Now!

Is our set of examples comprehensive?

Not really. There are many examples we haven’t considered, such as lists that
end with positive numbers and lists with 0.

Exercise

Work through these examples and see how they affect the program!

9.4.3 my-alternating: First Attempt

Once again, we’re going to work from examples.

Do Now!

Work out the results for my-alternating starting from the list [list: 1, 2, 3, 4, 5, 6].

Here’s how they work out:
<alternating-egs-1> ::=

check:
my-alternating([list: 1, 2, 3, 4, 5, 6]) is [list: 1, 3, 5]
my-alternating([list: 2, 3, 4, 5, 6]) is [list: 2, 4, 6]
my-alternating([list: 3, 4, 5, 6]) is [list:

3, 5]
my-alternating([list: 4, 5, 6]) is [list:

4, 6]
end

Wait, what’s that? The two answers above are each correct, but the second answer
does not help us in any way construct the first answer. That means the way we’ve
solved these problems until now is not enough, and we have more thinking to do.
We’ll return to this later [section 9.5.3 and also section 9.7.2].
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9.4.4 my-running-sum: First Attempt

One more time, we’ll begin with an example.

Do Now!

Work out the results for my-running-sum starting from the list [list: 1, 2, 3, 4, 5].

Here’s what our first few examples look like:
<running-sum-egs-1> ::=

check:
my-running-sum([list: 1, 2, 3, 4, 5]) is [list: 1, 3, 6, 10, 15]
my-running-sum([list: 2, 3, 4, 5]) is [list: 2, 5, 9, 14]
my-running-sum([list: 3, 4, 5]) is [list: 3, 7, 12]

end

Again, there doesn’t appear to be any clear connection between the result on the
rest of the list and the result on the entire list.

(That isn’t strictly true: we can still line up the answers as follows:

my-running-sum([list: 1, 2, 3, 4, 5]) is [list: 1, 3, 6, 10, 15]
my-running-sum([list: 2, 3, 4, 5]) is [list: 2, 5,
9, 14]
my-running-sum([list: 3, 4, 5]) is [list: 3,
7, 12]
and observe that we’re computing the answer for the rest of the list, then adding
the first element to each element in the answer, and linking the first element to
the front. In principle, we can compute this solution directly, but for now that may
be more work than finding a simpler way to answer it.)

We’ll return to this function later, too [section 9.7.1].

9.5 Structural Problems with Sub-Domains

9.5.1 my-max: Examples

Now let’s find the maximum value of a list. Let’s assume for simplicity that
we’re dealing with just lists of numbers. What kinds of lists should we construct?
Clearly, we should have empty and non-empty lists. . . but what else? Is a list like
[list: 1, 2, 3] a good example? Well, there’s nothing wrong with it, but
we should also consider lists where the maximum at the beginning rather than at
the end; the maximum might be in the middle; the maximum might be repeated;
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the maximum might be negative; and so on. While not comprehensive, here is a
small but interesting set of examples:

my-max([list: 1, 2, 3]) is 3
my-max([list: 3, 2, 1]) is 3
my-max([list: 2, 3, 1]) is 3
my-max([list: 2, 3, 1, 3, 2]) is 3
my-max([list: 2, 1, 4, 3, 2]) is 4
my-max([list: -2, -1, -3]) is -1
What about my-max(empty)?

Do Now!

Could we define my-max(empty) to be 0? Returning 0 for the empty list
has worked well twice already!

We’ll return to this in a while.
Before we proceed, it’s useful to know that there’s a function called num-max

already defined in Pyret, that compares two numbers:

num-max(1, 2) is 2
num-max(-1, -2) is -1

Exercise

Suppose num-max were not already built in. Can you define it? You will
find what you learned about booleans handy. Remember to write some tests!

Now we can look at my-max at work:

my-max([list: 1, 2, 3]) is 3
my-max([list: 2, 3]) is 3
my-max([list: 3]) is 3
Hmm. That didn’t really teach us anything, did it? Maybe, we can’t be sure. And
we still don’t know what to do with empty.

Let’s try the second example input:

my-max([list: 3, 2, 1]) is 3
my-max([list: 2, 1]) is 2
my-max([list: 1]) is 1
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This is actually telling us something useful as well, but maybe we can’t see it yet.
Let’s take on something more ambitious:

my-max([list: 2, 1, 4, 3, 2]) is 4
my-max([list: 1, 4, 3, 2]) is 4
my-max([list: 4, 3, 2]) is 4
my-max([list: 3, 2]) is 3
my-max([list: 2]) is 2
Observe how the maximum of the rest of the list gives us a candidate answer, but
comparing it to the first element gives us a definitive one:

my-max([list: 2, 1, 4, 3, 2]) is num-max(2, 4)
my-max([list: 1, 4, 3, 2]) is num-max(1, 4)
my-max([list: 4, 3, 2]) is num-max(4, 3)
my-max([list: 3, 2]) is num-max(3, 2)
my-max([list: 2]) is...
The last one is a little awkward: we’d like to write

my-max([list: 2]) is num-max(2,...)
but we don’t really know what the maximum (or minimum, or any other element)
of the empty list is, but we can only provide numbers to num-max. Therefore,
leaving out that dodgy case, we’re left with

my-max([list: 2, 1, 4, 3, 2]) is num-max(2, my-max([list: 1, 4, 3, 2]))
my-max([list: 1, 4, 3, 2]) is num-max(1, my-max([list:
4, 3, 2]))
my-max([list: 4, 3, 2]) is num-max(4, my-max([list:
3, 2]))
my-max([list: 3, 2]) is num-max(3, my-max([list:
2]))
Our examples have again helped: they’ve revealed how we can use the answer for
each rest of the list to compute the answer for the whole list, which in turn is the
rest of some other list, and so on. If you go back and look at the other example lists
we wrote above, you’ll see the pattern holds there too.

However, it’s time we now confront the empty case. The real problem is that
we don’t have a maximum for the empty list: for any number we might provide,
there is always a number bigger than it (assuming our computer is large enough)
that could have been the answer instead. In short, it’s nonsensical to ask for the
maximum (or minimum) of the empty list: the concept of “maximum” is only
defined on non-empty lists! That is, when asked for the maximum of an empty list,
we should signal an error:
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my-max(empty) raises ""
(which is how, in Pyret, we say that it will generate an error; we don’t care about
the details of the error, hence the empty string).

9.5.2 my-max: From Examples to Code

Once again, we can codify the examples above, i.e., turn them into a uniform pro-
gram that works for all instances. However, we now have a twist. If we blindly
followed the pattern we’ve used earlier, we would end up with:

fun my-max(l):
cases (List) l:

| empty => raise("not defined for empty lists")
| link(f, r) => num-max(f, my-max(r))

end
end

Do Now!

What’s wrong with this?

Consider the list [list: 2]. This turns into

num-max(2, my-max([list: ]))
which of course raises an error. Therefore, this function never works for any list
that has one or more elements!

That’s because we need to make sure aren’t trying to compute the maximum
of the empty list. Going back to our examples, we see that what we need to do,
before calling my-max, is check whether the rest of the list is empty. If it is, we
do not want to call my-max at all. That is:

fun my-max(l):
cases (List) l:

| empty => raise("not defined for empty lists")
| link(f, r) =>

cases (List) r:
| empty =>...
|...

end
end

end
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We’ll return to what to do when the rest is not empty in a moment.
If the rest of the list l is empty, our examples above tell us that the maximum

is the first element in the list. Therefore, we can fill this on:

fun my-max(l):
cases (List) l:
| empty => raise("not defined for empty lists")
| link(f, r) =>
cases (List) r:
| empty => f
|...

end
end

end

Note in particular the absence of a call to my-max. If the list is not empty, however,
our examples above tell us that my-max will give us the maximum of the rest of
the list, and we just need to compare this answer with the first element (f):

fun my-max(l):
cases (List) l:
| empty => raise("not defined for empty lists")
| link(f, r) =>
cases (List) r:
| empty => f
| else => num-max(f, my-max(r))

end
end

end

And sure enough, this definition does the job!

9.5.3 my-alternating: Examples and Code

Looking back at section 9.4.3, we can see that every alternate example is one we
want. The problem is, to get from one example to the one two below, we have to
remove two elements, not just one. That is, we have to pretend our list has elements
in pairs, not singles. In terms of examples, this would look as follows:

my-alternating([list: 1, 2, 3, 4, 5, 6]) is [list: 1, 3, 5]
my-alternating([list: 3, 4, 5, 6]) is [list: 3, 5]
my-alternating([list: 5, 6]) is [list:
5]
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my-alternating([list: ]) is [list:
]
Now it’s pretty easy to see how to construct a program: keep the first element, skip
the second, and repeat. Let’s see how far we can get using the template:

fun my-alternating(l):
cases (List) l:

| empty => empty
| link(f, r) =>

link(f,...r...)
end

end

Do Now!

Think about how to complete this definition.

Before we proceed, there is a small problem: our example is not good enough
to cover all the cases we’ll encounter. Specifically, to traverse by two we must
have two elements, but we might not: the list might have only an odd number of
elements. That is, we might instead have

my-alternating([list: 1, 2, 3, 4, 5]) is [list: 1, 3, 5]
my-alternating([list: 3, 4, 5]) is [list: 3, 5]
my-alternating([list: 5]) is [list: 5]
What this means is: We won’t always terminate with the empty list. We have to
be prepared to terminate with a list of one element. This suggests how we can
complete the definition:

fun my-alternating(l):
cases (List) l:

| empty => empty
| link(f, r) =>

cases (List) r: # note: deconstructing r, not l
| empty => # the list has an odd number of elements

[list: f]
| link(fr, rr) =>

# fr = first of rest, rr = rest of rest
link(f, my-alternating(rr))

end
end

end
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In section 9.7.2 we’ll see another way of approaching this problem.

9.6 More Structural Problems with Scalar Answers

9.6.1 my-avg: Examples

Let’s now try to compute the average of a list of numbers. Let’s start with the
example list [list: 1, 2, 3, 4] and work out more examples from it. The
average of numbers in this list is clearly (1 + 2 + 3 + 4)/4, or 10/4.

Based on the list’s structure, we see that the rest of the list is [list: 2, 3, 4],
and the rest of that is [list: 3, 4], and so on. The resulting averages are:

my-avg([list: 1, 2, 3, 4]) is 10/4
my-avg([list: 2, 3, 4]) is 9/3
my-avg([list: 3, 4]) is 7/2
my-avg([list: 4]) is 4/1
The problem is, it’s simply not clear how we get from the answer for the sub-list to
the answer for the whole list. That is, given the following two bits of information:

• The average of the remainder of the list is 9/3, i.e., 3.

• The first number in the list is 1.

How do we determine that the average of the whole list must be 10/4? If it’s not
clear to you, don’t worry: with just those two pieces of information, it’s impossible!

Here’s a simpler example that explains why. Let’s suppose the first value in a
list is 1, and the average of the rest of the list is 2. Here are two very different lists
that fit this description:

[list: 1, 2] # the rest has one element with sum 2
[list: 1, 4, 0] # the rest has two elements with sum 4

The average of the entire first list is 3/2, while the average of the entire second list
is 5/3, and the two are not the same.

That is, to compute the average of a whole list, it’s not even useful to know the
average of the rest of the list. Rather, we need to know the sum and the length of
the rest of the list. With these two, we can add the first to the sum, and 1 to the
length, and compute the new average.

In principle, we could try to make a average function that returns all this
information. Instead, it will be a lot simpler to simply decompose the task into two
smaller tasks. After all, we have already seen how to compute the length and how
to compute the sum. The average, therefore, can just use these existing functions:
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fun my-avg(l):
my-sum(l) / my-len(l)

end

Do Now!

What should be the average of the empty list? Does the above code produce
what you would expect?

Just as we argued earlier about the maximum [section 9.5], the average of the
empty list isn’t a well-defined concept. Therefore, it would be appropriate to signal
an error. The implementation above does this, but poorly: it reports an error on
division. A better programming practice would be to catch this situation and report
the error right away, rather than hoping some other function will report the error.

Exercise

Alter my-avg above to signal an error when given the empty list.

Therefore, we see that the process we’ve used—of inferring code from examples—
won’t may not always suffice, and we’ll need more sophisticated techniques to
solve some problems. However, notice that working from examples helps us quickly
identify situations where this approach does and doesn’t work. Furthermore, if you
look more closely you’ll notice that the examples above do hint at how to solve the
problem: in our very first examples, we wrote answers like 10/4, 9/3, and 7/2,
which correspond to the sum of the numbers divided by the length. Thus, writing
the answers in this form (as opposed, for instance, to writing the second of those
as 3) already reveals a structure for a solution.

9.7 Structural Problems with Accumulators

Now we are ready to tackle the problems we’ve left unfinished. They will require
a new technique to solve.

9.7.1 my-running-sum: Examples and Code

Recall how we began in section 9.4.4. Our examples [<running-sum-egs-1>]
showed the following problem. When we process the rest of the list, we have for-
gotten everything about what preceded it. That is, when processing the list starting
at 2 we forget that we’ve seen a 1 earlier; when starting from 3, we forget that
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we’ve seen both 1 and 2 earlier; and so on. In other words, we keep forgetting the
past. We need some way of avoiding that.

The easiest thing we can do is simply change our function to carry along this
“memory”, or what we’ll call an accumulator. That is, imagine we were defining
a new function, called my-rs. It will consume a list of numbers and produce a
list of numbers, but in addition it will also take the sum of numbers preceding the
current list.

Do Now!

What should the initial sum be?

Initially there is no “preceding list”, so we will use the additive identity: 0. The
type of my-rs is

my-rs :: Number, List<Number> -> List<Number>
Let’s now re-work our examples from <running-sum-egs-1> as examples of

my-rs instead:

my-rs( 0, [list: 1, 2, 3, 4, 5]) is [list: 0 + 1] + my-rs( 0 + 1, [list: 2, 3, 4, 5])
my-rs( 1, [list: 2, 3, 4, 5]) is [list: 1 + 2] + my-rs( 1 + 2, [list:
3, 4, 5])
my-rs( 3, [list: 3, 4, 5]) is [list: 3 + 3] + my-rs( 3 + 3, [list:
4, 5])
my-rs( 6, [list: 4, 5]) is [list: 6 + 4] + my-rs( 6 + 4, [list:
5])
my-rs(10, [list: 5]) is [list: 10 + 5] + my-rs(10 + 5, [list:
])
my-rs(15, [list: ]) is empty
That is, my-rs translates into the following code:

fun my-rs(acc, l):
cases (List) l:
| empty => empty
| link(f, r) =>
new-sum = acc + f
link(new-sum, my-rs(new-sum, r))

end
end

All that’s then left is to call it from my-running-sum:
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fun my-running-sum(l):
my-rs(0, l)

end

Observe that we do not change my-running-sum itself to take extra argu-
ments. There are multiple reasons for this. [FILL]

9.7.2 my-alternating: Examples and Code

Recall our effort in section 9.4.3, which we tackled in section 9.5.3. There, we
solved the problem by thinking of the list a little differently: we try, as much as
possible, to skip two elements of the list at a time, so the first element we see is
one we always want to keep as part of the answer. Here we will see another way to
think about the same problem.

Return to the examples we’ve already seen [<alternating-egs-1>]. As we’ve
already noted [section 9.5.3], in effect we want the output from every alternate
example. One option was to traverse the list essentially two elements at a time.
Another is to traverse it just one element at a time, but keeping track of whether
we’re at an odd or even element—i.e., add “memory” to our program. Since we
just need to track that one piece of information, we can use a Boolean to do it.
Let’s define a new function for this purpose:

my-alt :: List<Any>, Boolean -> List<Any>
The extra argument accumulates whether we’re at an element to keep or one to
discard.

We can reuse the existing template for list functions. When we have an element,
we have to consult the accumulator whether to keep it or not. If its value is true
we link it to the answer; otherwise we ignore it. As we process the rest of the list,
however, we have to remember to update the accumulator: if we kept an element
we don’t wish to keep the next one, and vice versa.

fun my-alt(l, keep):
cases (List) l:

| empty => empty
| link(f, r) =>

if keep:
link(f, my-alt(r, false))

else:
my-alt(r, true)

end
end
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Finally, we have to determine the initial value of the accumulator. In this case,
since we want to keep alternating elements starting with the first one, its initial
value should be true:

fun my-alternating(l):
my-alt(l, true)

end

Exercise

Define my-max using an accumulator. What does the accumulator repre-
sent? Do you encounter any difficulty?

9.8 Dealing with Multiple Answers

Our discussion above has assumed there is only one answer for a given input. This
is often true, but it also depends on how the problem is worded and how we choose
to generate examples. We will study this in some detail now.

9.8.1 uniq: Problem Setup

Consider the task of writing uniq: given a list of values, it produces a collection of uniq is the name of a Unix
utility with similar behavior;
hence the spelling of the name.

the same elements while avoiding any duplicates (hence uniq, short for “unique”).
Consider the following input: [list: 1, 2, 1, 3, 1, 2, 4, 1].

Do Now!

What is the sequence of examples this input generates? It’s really important
you stop and try to do this by hand. As we will see there are multiple solu-
tions, and it’s useful for you to consider what you generate. Even if you can’t
generate a sequence, trying to do so will better prepare you for what you read
next.

How did you obtain your example? If you just “thought about it for a moment
and wrote something down”, you may or may not have gotten something you can
turn into a program. Programs can only proceed systematically; they can’t “think”.
So, hopefully you took a well-defined path to computing the answer.

9.8.2 uniq: Examples

It turns out there are several possible answers, because we have (intentionally)
left the problem unspecified. Suppose there are two instances of a value in the
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list; which one do we keep, the first or the second? On the one hand, since the
two instances must be equivalent it doesn’t matter, but it does for writing concrete
examples and deriving a solution.

For instance, you might have generated this sequence:

examples:
uniq([list: 1, 2, 1, 3, 1, 2, 4, 1]) is [list: 3, 2, 4, 1]
uniq([list: 2, 1, 3, 1, 2, 4, 1]) is [list: 3, 2, 4, 1]
uniq([list: 1, 3, 1, 2, 4, 1]) is [list: 3, 2, 4, 1]
uniq([list: 3, 1, 2, 4, 1]) is [list: 3, 2, 4, 1]
uniq([list: 1, 2, 4, 1]) is [list: 2, 4, 1]
uniq([list: 2, 4, 1]) is [list: 2, 4, 1]
uniq([list: 4, 1]) is [list:

4, 1]
uniq([list: 1]) is [list:

1]
uniq([list: ]) is [list:

]
end

However, you might have also generated sequences that began with

uniq([list: 1, 2, 1, 3, 1, 2, 4, 1]) is [list: 1, 2, 3, 4]

or

uniq([list: 1, 2, 1, 3, 1, 2, 4, 1]) is [list: 4, 3, 2, 1]

and so on. Let’s work with the example we’ve worked out above.

9.8.3 uniq: Code

What is the systematic approach that gets us to this answer? When given a non-
empty list, we split it into its first element and the rest of the list. Suppose we have
the answer to uniq applied to the rest of the list. Now we can ask: is the first
element in the rest of the list? If it is, then we can ignore it, since it is certain to be
in the uniq of the rest of the list. If, however, it is not in the rest of the list, it’s
critical that we link it to the answer.

This translates into the following program. For the empty list, we return the
empty list. If the list is non-empty, we check whether the first is in the rest of the
list. If it is not, we include it; otherwise we can ignore it for now.

This results in the following program:
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fun uniq-rec(l :: List<Any>) -> List<Any>:
cases (List) l:
| empty => empty
| link(f, r) =>
if r.member(f):

uniq-rec(r)
else:
link(f, uniq-rec(r))

end
end

end
which we’ve called uniq-rec instead of uniq to differentiate it from other ver-
sions of uniq.

Exercise

Note that we’re using .member to check whether an element is a member of
the list. Write a function member that consumes an element and a list, and
tells us whether the element is a member of the list.

9.8.4 uniq: Reducing Computation

Notice that this function has a repeated expression. Instead of writing it twice, we
could call it just once and use the result in both places:

fun uniq-rec2(l :: List<Any>) -> List<Any>:
cases (List) l:
| empty => empty
| link(f, r) =>
ur = uniq-rec(r)
if r.member(f):

ur
else:

link(f, ur)
end

end
end
While it may seem that we have merely avoided repeating an expression, by mov-
ing the computation uniq-rec(r) to before the conditional, we have actually
changed the program’s behavior in a subtle way. We will discuss this later when
we get to [REC tail calls].
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You might think, because we replaced two function calls with one, that we’ve
reduced the amount of computation the program does. It does not! The two func-
tion calls are both in the two branches of the same conditional; therefore, for any
given list element, only one or the other call to uniq happens. In fact, in both
cases, there was one call to uniq before, and there is one now. So we have re-
duced the number of calls in the source program, but not the number that take place
when the program runs. In that sense, the name of this section was intentionally
misleading!

However, there is one useful reduction we can perform, which is enabled by the
structure of uniq-rec2. We currently check whether f is a member of r, which
is the list of all the remaining elements. In our example, this means that in the very
second turn, we check whether 2 is a member of the list [list: 1, 3, 1, 2, 4, 1].
This is a list of six elements, including three copies of 1. We compare 2 against
two copies of 1. However, we gain nothing from the second comparison. Put
differently, we can think of uniq(r) as a “summary” of the rest of the list that
is exactly as good as r itself for checking membership, with the advantage that
it might be significantly shorter. This, of course, is exactly what ur represents.
Therefore, we can encode this intuition as follows:

fun uniq-rec3(l :: List<Any>) -> List<Any>:
cases (List) l:

| empty => empty
| link(f, r) =>

ur = uniq-rec(r)
if ur.member(f):
ur

else:
link(f, ur)

end
end

end

Note that all that changed is that we check for membership in ur rather than in r.

Exercise

Later [chapter 16] we will study how to formally study how long a program
takes to run. By the measure introduced in that section, does the change we
just made make any difference? Be careful with your answer: it depends on
how we count “the length” of the list.

Observe that if the list never contained duplicates in the first place, then it
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wouldn’t matter which list we check membership in—but if we knew the list didn’t
contain duplicates, we wouldn’t be using uniq in the first place! We will return to
the issue of lists and duplicate elements in chapter 17.

9.8.5 uniq: Example and Code Variations

As we mentioned earlier, there are other example sequences you might have written
down. Here’s a very different process:

• Start with the entire given list and with the empty answer (so far).

• For each list element, check whether it’s already in the answer so far. If it is,
ignore it, otherwise extend the answer with it.

• When there are no more elements in the list, the answer so far is the answer
for the whole list.

Notice that this solution assumes that we will be accumulating the answer as we
traverse the list. Therefore, we can’t even write the example with one parameter as
we did before. We would argue that a natural solution asks whether we can solve
the problem just from the structure of the data using the computation we are already
defining, as we did above. If we cannot, then we have to resort to an accumulator.
But because we can, the accumulator is unnecessary here and greatly complicated
even writing down examples (give it a try!).

9.8.6 uniq: Why Produce a List?

If you go back to the original statement of the uniq problem [section 9.8.1], you’ll
notice it said nothing about what order the output should have; in fact, it didn’t even
say the output needs to be a list (and hence have an order). In that case, we should
think about whether a list even makes sense for this problem. In fact, if we don’t
care about order and don’t want duplicates (by definition of uniq), then there is
a much simpler solution, which is to produce a set. Pyret already has sets built in,
and converting the list to a set automatically takes care of duplicates. This is of
course cheating from the perspective of learning how to write uniq, but it is worth
remembering that sometimes the right data structure to produce isn’t necessarily
the same as the one we were given. Also, later [chapter 17], we will see how to
build sets for ourselves (at which point, uniq will look familiar, since it is at the
heart of set-ness).
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9.9 Monomorphic Lists and Polymorphic Types

Earlier we wrote contracts like:

my-len :: List<Any> -> Number
my-max :: List<Any> -> Any
These are unsatisfying for several reasons. Consider my-max. The contract sug-
gests that any kind of element can be in the input list, but in fact that isn’t true: the
input [list: 1, "two", 3] is not valid, because we can’t compare 1 with
"two" or "two" with 3.

Exercise

What happens if we run 1 > "two" or "two" > 3?

Rather, what we mean is a list where all the elements are of the same kind,Technically, elements that are
also comparable. and the contract has not captured that. Furthermore, we don’t mean that my-max

might return any old type: if we supply it with a list of numbers, we will not get a
string as the maximum element! Rather, it will only return the kind of element that
is in the provided list.

In short, we mean that all elements of the list are of the same type, but they can
be of any type. We call the former monomorphic: “mono” meaning one, and “mor-
phic” meaning shape, i.e., all values have one type. But the function my-max itself
can operate over many of these kinds of lists, so we call it polymorphic (“poly”
meaning many).

Therefore, we need a better way of writing these contracts. Essentially, we
want to say that there is a type variable (as opposed to regular program variable)
that represents the type of element in the list. Given that type, my-max will return
an element of that type. We write this syntactically as follows:

fun my-max<T>(l :: List<T>) -> T:...end
The notation <T> says that T is a type variable parameter that will be used in the
rest of the function (both the header and the body).

Using this notation, we can also revisit my-len. Its header now becomes:

fun my-len<T>(l :: List<T>) -> Number:...end
Note that my-len did not actually “care” that whether all the values were of the
same type or not: it never looks at the individual elements, much less at pairs
of them. However, as a convention we demand that lists always be monomorphic.
This is important because it enables us to process the elements of the list uniformly:
if we know how to process elements of type T, then we will know how to process
a List<T>. If the list elements can be of truly any old type, we can’t know how
to process its elements.



Chapter 10

Introduction to Structured Data

Earlier we had our first look at types. Until now, we have only seen the types that
Pyret provides us, which is an interesting but nevertheless quite limited set. Most
programs we write will contain many more kinds of data.

10.1 Understanding the Kinds of Compound Data

10.1.1 A First Peek at Structured Data

There are times when a datum has many attributes, or parts. We need to keep them
all together, and sometimes take them apart. For instance:

• An iTunes entry contains a bunch of information about a single song: not
only its name but also its singer, its length, its genre, and so on.

• Your GMail application contains a bunch of information about a single mes-
sage: its sender, the subject line, the conversation it’s part of, the body, and
quite a bit more.

In examples like this, we see the need for structured data: a single datum has
structure, i.e., it actually consists of many pieces. The number of pieces is fixed,
but may be of different kinds (some might be numbers, some strings, some images,
and different types may be mixed together in that one datum). Some might even be
other structured data: for instance, a date usually has at least three parts, the day,
month, and year. The parts of a structured datum are called its fields.
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10.1.2 A First Peek at Conditional Data

Then there are times when we want to represent different kinds of data under a
single, collective umbrella. Here are a few examples:

• A traffic light can be in different states: red, yellow, or green. Collectively,Yes, in some countries there are
different or more colors and
color-combinations.

they represent one thing: a new type called a traffic light state.

• A zoo consists of many kinds of animals. Collectively, they represent one
thing: a new type called an animal. Some condition determines which par-
ticular kind of animal a zookeeper might be dealing with.

• A social network consists of different kinds of pages. Some pages represent
individual humans, some places, some organizations, some might stand for
activities, and so on. Collectively, they represent a new type: a social media
page.

• A notification application may report many kinds of events. Some are for
email messages (which have many fields, as we’ve discussed), some are for
reminders (which might have a timestamp and a note), some for instant mes-
sages (similar to an email message, but without a subject), some might even
be for the arrival of a package by physical mail (with a timestamp, shipper,
tracking number, and delivery note). Collectively, these all represent a new
type: a notification.

We call these “conditional” data because they represent an “or”: a traffic light is
red or green or yellow; a social medium’s page is for a person or location or
organization; and so on. Sometimes we care exactly which kind of thing we’re
looking at: a driver behaves differently on different colors, and a zookeeper feeds
each animal differently. At other times, we might not care: if we’re just counting
how many animals are in the zoo, or how many pages are on a social network, or
how many unread notifications we have, their details don’t matter. Therefore, there
are times when we ignore the conditional and treat the datum as a member of the
collective, and other times when we do care about the conditional and do different
things depending on the individual datum. We will make all this concrete as we
start to write programs.

10.2 Defining and Creating Structured and Conditional
Data

We have used the word “data” above, but that’s actually been a bit of a lie. As we
said earlier, data are how we represent information in the computer. What we’ve
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been discussing above is really different kinds of information, not exactly how they
are represented. But to write programs, we must wrestle concretely with represen-
tations. That’s what we will do now, i.e., actually show data representations of all
this information.

10.2.1 Defining and Creating Structured Data

Let’s start with defining structured data, such as an iTunes song record. Here’s a
simplified version of the information such an app might store:

• The song’s name, which is a String.

• The song’s singer, which is also a String.

• The song’s year, which is a Number.

Let’s now introduce the syntax by which we can teach this to Pyret:

data ITunesSong: song(name, singer, year) end

This tells Pyret to introduce a new type of data, in this case called ITunesSong. We follow a convention that
types always begin with a
capital letter.

The way we actually make one of these data is by calling song with three param-
eters; for instance:

It’s worth noting that music
managers that are capable of
making distinctions between,
say, Dance, Electronica, and
Electronic/Dance, classify two
of these three songs by a single
genre: “World”.

<structured-examples> ::=
song("La Vie en Rose", "Édith Piaf", 1945)
song("Stressed Out", "twenty one pilots", 2015)
song("Waqt Ne Kiya Kya Haseen Sitam", "Geeta Dutt", 1959)

Always follow a data definition with a few concrete instances of the data! This
makes sure you actually do know how to make data of that form. Indeed, it’s not
essential but a good habit to give names to the data we’ve defined, so that we can
use them later:

lver = song("La Vie en Rose", "Édith Piaf", 1945)
so = song("Stressed Out", "twenty one pilots", 2015)
wnkkhs = song("Waqt Ne Kiya Kya Haseen Sitam", "Geeta Dutt", 1959)

10.2.2 Annotations for Structured Data

Recall that in [section 5.2.2] we discussed annotating our functions. Well, we
can annotate our data, too! In particular, we can annotate both the definition of
data and their creation. For the former, consider this data definition, which makes
the annotation information we’d recorded informally in text a formal part of the
program:
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data ITunesSong: song(name :: String, singer :: String, year :: Number) end

Similarly, we can annotate the variables bound to examples of the data. But what
should we write here?

lver :: ___ == song("La Vie en Rose", "Édith Piaf", 1945)

Recall that annotations takes names of types, and the new type we’ve created is
called ITunesSong. Therefore, we should write

lver :: ITunesSong = song("La Vie en Rose", "Édith Piaf", 1945)

Do Now!

What happens if we instead write this?

lver :: String = song("La Vie en Rose", "Édith Piaf", 1945)
What error do we get? How about if instead we write these?

lver :: song = song("La Vie en Rose", "Édith Piaf", 1945)
lver :: 1 = song("La Vie en Rose", "Édith Piaf", 1945)
Make sure you familiarize yourself with the error messages that you get.

10.2.3 Defining and Creating Conditional Data

The data construct in Pyret also lets us create conditional data, with a slightly
different syntax. For instance, say we want to define the colors of a traffic light:

data TLColor:
| Red
| Yellow
| Green

end

Each | (pronounced “stick”) introduces another option. You would make instancesConventionally, the names of
the options begin in lower-case,
but if they have no additional
structure, we often capitalize
the initial to make them look
different from ordinary
variables: i.e., Red rather than
red.

of traffic light colors as

Red
Green
Yellow

A more interesting and common example is when each condition has some
structure to it; for instance:
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data Animal:
| boa(name :: String, length :: Number)
| armadillo(name :: String, liveness :: Boolean)

end

We can make examples of them as you would expect: “In Texas, there ain’t nothin’ in
the middle of the road except
yellow stripes and a dead
armadillo.”—Jim Hightower

b1 = boa("Alice", 10)
b2 = boa("Bob", 8)
a1 = armadillo("Glypto", true)
We call the different conditions variants.

Do Now!

How would you annotate the three variable bindings?

Notice that the distinction between boas and armadillos is lost in the annotation.
When we get to refinements [REF] we can recapture this distinction if we really
want it.

b1 :: Animal = boa("Alice", 10)
b2 :: Animal = boa("Bob", 8)
a1 :: Animal = armadillo("Glypto", true)

When defining a conditional datum the first stick is actually optional, but adding
it makes the variants line up nicely. This helps us realize that our first example

data ITunesSong: song(name, singer, year) end

is really just the same as

data ITunesSong:
| song(name, singer, year)

end

i.e., a conditional type with just one condition, where that one condition is struc-
tured.

10.3 Programming with Structured and Conditional Data

So far we’ve learned how to create structured and conditional data, but not yet how
to take them apart or write any expressions that involve them. As you might expect,
we need to figure out how to

• take apart the fields of a structured datum, and



112 CHAPTER 10. INTRODUCTION TO STRUCTURED DATA

• tell apart the variants of a conditional datum.

As we’ll see, Pyret also gives us a convenient way to do both together.

10.3.1 Extracting Fields from Structured Data

Let’s write a function that tells us how old a song is. First, let’s think about what
the function consumes (an ITunesSong) and produces (a Number). This gives
us a rough skeleton for the function:
<song-age> ::=

fun song-age(s :: ITunesSong) -> Number:
<song-age-body>

end
We know that the form of the body must be roughly:
<song-age-body> ::=

2016 - <get the song year>
We can get the song year by using Pyret’s field access, which is a . followed by a
field’s name—in this case, year—following the variable that holds the structured
datum. Thus, we get the year field of s (the parameter to song-age) with

s.year
So the entire function body is:

fun song-age(s :: ITunesSong) -> Number:
2016 - s.year

end

It would be good to also record some examples (<structured-examples>), giving
us a comprehensive definition of the function:

fun song-age(s :: ITunesSong) -> Number:
2016 - s.year

where:
song-age(lver) is 71
song-age(so) is 1
song-age(wnkkhs) is 57

end

10.3.2 Telling Apart Variants of Conditional Data

Now let’s see how we tell apart variants. For this, we have to introduce another
new piece of Pyret syntax: cases. A cases expression has several branches:
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exactly as many as there are in the data definition. Each branch corresponds to one
of the variants. Thus, if we wanted to compute advice for a driver based on a traffic
light’s state, we might write:

fun advice(c :: TLColor) -> String:
cases (TLColor) c:
| Red => "wait!"
| Yellow => "get ready..."
| Green => "go!"

end
end

Note that cases is followed by the name of the conditionally-defined type in
parentheses (here, TLColor), and then an expression that computes a value of
that type (in this case, c is already bound to such a value). Each variant is followed
by =>, and then an expression that computes an answer for that variant.

Do Now!

What happens if you leave out the =>?

Do Now!

What if you leave out a variant? Leave out the Red Variant, then try both
advice(Yellow) and advice(Red).

10.3.3 Processing Fields of Variants

In this example, the variants had no fields. But if the variant has fields, Pyret
expects you to list names of variables for those fields, and will then automatically
bind those variables—so you don’t need to use the .-notation to get the field values.

To illustrate this, assume we want to get the name of any animal:
<animal-name> ::=

fun animal-name(a :: Animal) -> String:
<animal-name-body>

end
Because an Animal is conditionally defined, we know that we are likely to want
a cases to pull it apart; furthermore, we should give names to each of the fields: Note that the names of the

variables do not have to match
the names of fields.
Conventionally, we give longer,
descriptive names to the field
definitions and short names to
the corresponding variables.

<animal-name-body> ::=
cases (Animal) a:
| boa(n, l) => ...
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| armadillo(n, l) => ...
end
In both cases, we want to return the field n, giving us the complete function:

fun animal-name(a :: Animal) -> String:
cases (Animal) a:

| boa(n, l) => n
| armadillo(n, l) => n

end
where:

animal-name(b1) is "Alice"
animal-name(b2) is "Bob"
animal-name(a1) is "Glypto"

end
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Collections of Structured Data

As we were looking at structured data [chapter 10], we came across several situa-
tions where we have not one but many data: not one song but a playlist of them,
not one animal but a zoo full of them, not one notification but several, not just one
message (how we wish!) but many in our inbox, and so on. In general, then, we
rarely have just a single structured datum: if we know we have only one, we might One notable exception:

consider the configuration or
preference information for a
system. This might be stored in
a file and updated through a
user interface. Even though
there is (usually) only one
configuration at a time, it may
have so many pieces that we
won’t want to clutter our
program with a large number of
variables; instead, we might
create a structure representing
the configuration, and load just
one instance of it. In effect,
what would have been
unconnected variables now
become a set of linked fields.

just have a few separate variables representing the pieces without going to the ef-
fort of creating and taking apart a structure. In general, therefore, we want to talk
about collections of structured data. Here are more examples:

• The set of messages matching a tag.

• The list of messages in a conversation.

• The set of friends of a user.

Do Now!

How are collective data different from structured data?

In structured data, we have a fixed number of possibly different kinds of values.
In collective data, we have a variable number the same kind of value. For instance,
we don’t say up front how many songs must be in a playlist or how many pages a
user can have; but every one of them must be a song or a page. (A page may, of
course, may be conditionally defined, but ultimately everything in the collection is
still a page.)

Observe that we’ve mentioned both sets and lists above. The difference be-
tween a set and a list is that a set has no order, but a list has an order. This distinc-
tion is not vital now but we will return to it later [section 11.2].
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Of course, sets and lists are not the only kinds of collective data we can have.
Here are some more:

• A family tree of people.

• The filesystem on your computer.

• A seating chart at a party.

• A social network of pages.

and so on. For the most part these are just as easy to program and manipulate as
the earlier collective data once we have some experience, though some of them
[section 19.1] can involve more subtlety.

We have already seen tables [chapter 7], which are a form of collective, struc-
tured data. Now we will look at a few more, and how to program them.

11.1 Lists as Collective Data

We have already seen one example of a collection in some depth before: lists. A
list is not limited to numbers or strings; it can contain any kind of value, including
structured ones. For instance, using our examples from earlier [section 10.2.1], we
can make a list of songs:

song-list = [list: lver, so, wnkkhs]
This is a three-element list where each element is a song:

check:
song-list.length() is 3
song-list.first is lver

end

Thus, what we have seen earlier about building functions over lists [chapter 9]
applies here too. To illustrate, suppose we wish to write the function oldest-song-age,
which consumes a list of songs and produces the oldest song in the list. (There may
be more than one song from the same year; the age—by our measure—of all those
songs will be the same. If this happens, we just pick one of the songs from the list.
Because of this, however, it would be more accurate to say “an” rather than “the”
oldest song.)

Let’s work through this with examples. To keep our examples easy to write,
instead of writing out the full data for the songs, we’ll refer to them just by their
variable names. Clearly, the oldest song in our list is bound to lvar.
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oldest-song([list: lver, so, wnkkhs]) is lvar
oldest-song([list: so, wnkkhs]) is wnkkhs
oldest-song([list: wnkkhs]) is wnkkhs
oldest-song([list: ]) is ???

What do we write in the last case? Recall that we saw this problem earlier
[section 9.5.1]: there is no answer in the empty case. In fact, the computation
here is remarkably similar to that of my-max, because it is essentially the same
computation, just asking for the minimum year (which would make the song the
oldest).

From our examples, we can see a solution structure echoing that of my-max.
For the empty list, we signal an error. Otherwise, we compute the oldest song in
the rest of the list, and compare its year against that of the first. Whichever has the
older year is the answer.

fun oldest-song(sl :: List<ITunesSong>) -> ITunesSong:
cases (List) sl:
| empty => raise("not defined for empty song lists")
| link(f, r) =>
cases (List) r:
| empty => f
| else =>

osr = oldest-song(r)
if osr.year < f.year:

osr
else:

f
end

end
end

end

Note that there is no guarantee there will be only oldest song, and this is re-
flected in the possibility that osr.year may equal f.year. However, our prob-
lem statement allowed us to pick just one such song, which is what we’ve done.

Do Now!

Modify the solution above to oldest-song-age, which computes the age
of the oldest song(s).

Haha, just kidding! You shouldn’t modify the previous solution at all! Instead,
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you should leave it alone—it may come in handy for other purposes—and instead
build a new function to use it:

fun oldest-song-age(sl :: List<ITunesSong>) -> Number:
os = oldest-song(sl)
song-age(os)

where:
oldest-song-age(song-list) is 71

end

11.2 Sets as Collective Data

As we’ve already seen, for some problems we don’t care about the order of inputs,
nor about duplicates. Here are more examples where we don’t care about order or
duplicates:

• Your Web browser records which Web pages you’ve visited, and some Web
sites use this information to color visited links differently than ones you
haven’t seen. This color is typically independent of how many times you
have visited the page.

• During an election, a poll agent might record that you have voted, but does
not need to record how many times you have voted, and does not care about
the order in which people vote.

For such problems a list is a bad fit relative to a set. Here we will see how Pyret’s
built-in sets work. Later [chapter 17] we will see how we can build sets for our-
selves.

First, we can define sets just as easily as we can lists:

song-set = [set: lver, so, wnkkhs]
Of course, due to the nature of the language’s syntax, we have to list the elements
in some order. Does it matter?

Do Now!

How can we tell whether Pyret cares about the order?

Here’s the simplest way to check:

check:
song-set2 = [set: so, wnkkhs, lver]
song-set is song-set2

end
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If we want to be especially cautious, we can write down all the other orderings of
the elements as well, and see that Pyret doesn’t care.

Exercise

How many different orders are there?

Similarly for duplicates:

check:
song-set3 = [set: lver, so, wnkkhs, so, so, lver, so]
song-set is song-set3
song-set3.size() is 3

end
We can again try several different kinds of duplication and confirm that sets ignore
them.

11.2.1 Picking Elements from Sets

This lack of an ordering, however, poses a problem. With lists, it was meaningful
to talk about the “first” and corresponding “rest”. By definition, with sets there is
not “first” element. In fact, Pyret does not even offer fields similar to first and
rest. In its place is something a little more accurate but complex.

The .pick method returns a random element of a set. It produces a value of
type Pick (which we get from the pick library). When we pick an element, there
are two possibilities. One is that the set is empty (analogous to a list being empty),
which gives us a pick-none value. The other option is called pick-some,
which gives us an actual member of the set.

The pick-some variant of Pick has two fields, not one. To understand why
takes a moment’s work. Let’s explore it by choosing an element of a set:

fun an-elt(s :: Set):
cases (Pick) s.pick():
| pick-none => error("empty set")
| pick-some(e, r) => e

end
end
(Notice that we aren’t using the r field in the pick-some case.)

Do Now!

Can you guess why we didn’t write examples for an-elt?
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Do Now!

Run an-elt(song-set). What element do you get?
Run it again. Run it five more times.
Do you get the same element every time?

No you don’t! Pyret is designed to not always return the same element when pick-Well, actually, it’s impossible to
be certain you don’t. There is a
very, very small likelihood you
get the exact same element on
every one of six runs. If it
happens to you, keep running it
more times!

ing from a set. This is on purpose: it’s to drive home the random nature of choosing
from a set, and to prevent your program from accidentally depending on a particu-
lar order that Pyret might use.

Do Now!

Given that an-elt does not return a predictable element, what if any tests
can we write for it?

Observe that though we can’t predict which element an-elt will produce, we do
know it will produce an element of the set. Therefore, what we can write are tests
that ensure the resulting element is a member of the set—though in this case, that
would not be particularly surprising.

11.2.2 Computing with Sets

Once we have picked an element from a set, it’s often useful to obtain the set
consisting of the remaining elements. We have already seen that choosing the first
field of a pick-some is similar to taking the “first” of a set. We therefore want a
way to get the “rest” of the set. However, we want the rest to what we obtain after
excluding this particular “first”. That’s what the second field of a pick-some is:
what’s left of the set.

Given this, we can write functions over sets that look roughly analogous to
functions over lists. For instance, suppose we want to compute the size of a set.
The function looks similar to my-len [section 9.2]:

fun my-set-size(shadow s :: Set) -> Number:
cases (Pick) s.pick():

| pick-none => 0
| pick-some(e, r) =>

1 + my-set-size(r)
end

end
Though the process of deriving this is similar to that we used for my-len, the
random nature of picking elements makes it harder to write examples that the actual
function’s behavior will match.
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11.3 Combining Structured and Collective Data

As the above examples illustrate, a program’s data organization will often involve
multiple kinds of compound data, often deeply intertwined. Let’s first think of
these in pairs.

Exercise

Come up with examples that combine:

• structured and conditional data,

• structured and collective data, and

• conditional and collective data.

You’ve actually seen examples of each of these above. Identify them.

Finally, we might even have all three at once. For instance, a filesystem is usu-
ally a list (collective) of files and folders (conditional) where each file has several
attributes (structured). Similarly, a social network has a set of pages (collective)
where each page is for a person, organization, or other thing (conditional), and each
page has several attributes (structured). Therefore, as you can see, combinations of
these arise naturally in all kinds of applications that we deal with on a daily basis.

Exercise

Take three of your favorite Web sites or apps. Identify the kinds of data they
present. Classify these as structured, conditional, and collective. How do
they combine these data?
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Chapter 12

Recursive Data

Sometimes, a data definition has a piece that refers back to itself. For example, a
linked list of numbers:

data NumList:
| nl-empty
| nl-link(first :: Number, rest :: NumList)

end

Moving on to defining examples, we can talk about empty lists: The nl- stands for NumList.
This avoids clashing with
Pyret’s empty.nl-empty

We can represent short lists, like a sequence of two 4’s:

nl-link(4, nl-link(4, nl-empty))
Since these are created with constructors from data, we can use cases with

them:

cases (NumList) nl-empty:
| nl-empty => "empty!"
| nl-link(first, rest) => "not empty"

end

=> "empty!"

cases (NumList) nl-link(1, nl-link(2, nl-empty)):
| nl-empty => "empty!"
| nl-link(first, rest) => first

end
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=> 1
This style of data definition permits us to create data that are unbounded or

arbitrarily-sized. Given a NumList, there is an easy way to make a new, larger
one: just use nl-link. So, we need to consider larger lists:

nl-link(1,
nl-link(2,

nl-link(3,
nl-link(4,

nl-link(5,
nl-link(6,

nl-link(7,
nl-link(8,

nl-empty))))
Let’s try to write a function contains-3, which returns true if the NumList

contains the value 3, and false otherwise.
First, our header:

fun contains-3(nl :: NumList) -> Boolean:
doc: "Produces true if the list contains 3, false otherwise"

end

Next, some tests:

fun contains-3(nl :: NumList) -> Boolean:
doc: "Produces true if the list contains 3, false otherwise"

where:
contains-3(nl-empty) is false
contains-3(nl-link(3, nl-empty)) is true
contains-3(nl-link(1, nl-link(3, nl-empty))) is true
contains-3(nl-link(1, nl-link(2, nl-link(3, nl-link(4, nl-empty))))) is true
contains-3(nl-link(1, nl-link(2, nl-link(5, nl-link(4, nl-empty))))) is false

end

Next, we need to fill in the body with the template for a function over NumLists.
We can start with the analogous template using cases we had before:

fun contains-3(nl :: NumList) -> Boolean:
doc: "Produces true if the list contains 3, false otherwise"
cases (NumList) nl:

| nl-empty => ...
| nl-link(first, rest) =>
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... first ...

... rest ...
end

end

An empty list doesn’t contain the number 3, surely, so the answer must be false
in the nl-empty case. In the nl-link case, if the first element is 3, we’ve
successfully answered the question. That only leaves the case where the argument
is an nl-link and the first element does not equal 3:

fun contains-3(nl :: NumList) -> Boolean:
cases (NumList) nl:
| nl-empty => false
| nl-link(first, rest) =>
if first == 3:

true
else:

# handle rest here
end

end
end

Since we know rest is a NumList (based on the data definition), we can
use a cases expression to work with it. This is sort of like filling in a part of the
template again:

fun contains-3(nl :: NumList) -> Boolean:
cases (NumList) nl:
| nl-empty => false
| nl-link(first, rest) =>
if first == 3:

true
else:
cases (NumList) rest:

| nl-empty => ...
| nl-link(first-of-rest, rest-of-rest) =>

... first-of-rest ...

... rest-of-rest ...
end

end
end

end
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If the rest was empty, then we haven’t found 3 (just like when we checked
the original argument, nl). If the rest was a nl-link, then we need to check
if the first thing in the rest of the list is 3 or not:

fun contains-3(nl :: NumList) -> Boolean:
cases (NumList) nl:

| nl-empty => false
| nl-link(first, rest) =>

if first == 3:
true

else:
cases (NumList) rest:

| nl-empty => false
| nl-link(first-of-rest, rest-of-rest) =>

if first-of-rest == 3:
true

else:
# fill in here ...

end
end

end
end

end
Since rest-of-rest is a NumList, we can fill in a cases for it again:

fun contains-3(nl :: NumList) -> Boolean:
cases (NumList) nl:

| nl-empty => false
| nl-link(first, rest) =>

if first == 3:
true

else:
cases (NumList) rest:

| nl-empty => false
| nl-link(first-of-rest, rest-of-rest) =>

if first-of-rest == 3:
true

else:
cases (NumList) rest-of-rest:

| nl-empty => ...
| nl-link(first-of-rest-of-rest, rest-of-rest-of-rest) =>
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... first-of-rest-of-rest ...

... rest-of-rest-of-rest ...
end

end
end

end
end

end

See where this is going? Not anywhere good. We can copy this cases ex-
pression as many times as we want, but we can never answer the question for a list
that is just one element longer than the number of times we copy the code.

So what to do? We tried this approach of using another copy of cases based
on the observation that rest is a NumList, and cases provides a meaning-
ful way to break apart a NumList; in fact, it’s what the recipe seems to lead to
naturally.

Let’s go back to the step where the problem began, after filling in the template
with the first check for 3:

fun contains-3(nl :: NumList) -> Boolean:
cases (NumList) nl:
| nl-empty => false
| nl-link(first, rest) =>
if first == 3:

true
else:
# what to do with rest?

end
end

end

We need a way to compute whether or not the value 3 is contained in rest.
Looking back at the data definition, we see that rest is a perfectly valid NumList,
simply by the definition of nl-link. And we have a function (or, most of one)
whose job is to figure out if a NumList contains 3 or not: contains-3. That
ought to be something we can call with rest as an argument, and get back the
value we want:

fun contains-3(nl :: NumList) -> Boolean:
cases (NumList) nl:
| nl-empty => false
| nl-link(first, rest) =>
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if first == 3:
true

else:
contains-3(rest)

end
end

end

And lo and behold, all of the tests defined above pass. It’s useful to step through
what’s happening when this function is called. Let’s look at an example:

contains-3(nl-link(1, nl-link(3, nl-empty)))
First, we substitute the argument value in place of nl everywhere it appears;

that’s just the usual rule for function calls.

=> cases (NumList) nl-link(1, nl-link(3, nl-empty)):
| nl-empty => false
| nl-link(first, rest) =>

if first == 3:
true

else:
contains-3(rest)

end
end

Next, we find the case that matches the constructor nl-link, and substitute
the corresponding pieces of the nl-link value for the first and rest identi-
fiers.

=> if 1 == 3:
true

else:
contains-3(nl-link(3, nl-empty))

end

Since 1 isn’t 3, the comparison evaluates to false, and this whole expression
evaluates to the contents of the else branch.

=> if false:
true

else:
contains-3(nl-link(3, nl-empty))

end
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=> contains-3(nl-link(3, nl-empty))
This is another function call, so we substitute the value nl-link(3, nl-empty),

which was the rest field of the original input, into the body of contains-3 this
time.

=> cases (NumList) nl-link(3, nl-empty):
| nl-empty => false
| nl-link(first, rest) =>

if first == 3:
true

else:
contains-3(rest)

end
end

Again, we substitute into the nl-link branch.

=> if 3 == 3:
true

else:
contains-3(nl-empty)

end

This time, since 3 is 3, we take the first branch of the if expression, and the
whole original call evaluates to true.

=> if true:
true

else:
contains-3(nl-empty)

end

=> true
An interesting feature of this trace through the evaluation is that we reached

the expression contains-3(nl-link(3, nl-empty)), which is a normal
call to contains-3; it could even be a test case on its own. The implementation
works by doing something (checking for equality with 3) with the non-recursive
parts of the datum, and combining that result with the result of the same operation
(contains-3) on the recursive part of the datum. This idea of doing recursion
with the same function on self-recursive parts of the datatype lets us extend our
template to handle recursive positions.
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The simple design recipe dictated this as the template:

#|
fun num-list-fun(nl :: NumList) -> ???:
cases (NumList) nl:

| nl-empty => ...
| nl-link(first, rest) =>

... first ...

... rest ...
end

end
|#

However, this template doesn’t give much guidance with what to do with the
rest field. We will extend the template with the following rule: each self-recursive
position in the data definition becomes a self-recursive function call in the template.
So the new template looks like:

#|
fun num-list-fun(nl :: NumList) -> ???:
cases (NumList) nl:

| nl-empty => ...
| nl-link(first, rest) =>

... first ...

... num-list-fun(rest) ...
end

end
|#

To handle recursive data, the design recipe just needs to be modified to have this
extended template. When you see a recursive data definition (of which there will
be many when programming in Pyret), you should naturally start thinking about
what the recursive calls will return and how to combine their results with the other,
non-recursive pieces of the datatype.

Exercise

Use the design recipe to write a function contains-n that takes a NumList
and a Number, and returns whether that number is in the NumList.



131

Exercise

Use the design recipe to write a function sum that takes a NumList, and
returns the sum of all the numbers in it. The sum of the empty list is 0.

Exercise

Use the design recipe to write a function remove-3 that takes a NumList,
and returns a new NumList with any 3’s removed. The remaining elements
should all be in the list in the same order they were in the input.

Exercise

Write a data definition called NumListList that represents a list of NumLists,
and use the design recipe to write a function sum-of-lists that takes a
NumListList and produces a NumList containing the sums of the sub-
lists.
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Chapter 13

Interactive Games as Reactive
Systems

In this tutorial we’re going to write a little interactive game. The game won’t be
sophisticated, but it’ll have all the elements you need to build much richer games
of your own.

Albuquerque Balloon Fiesta

Imagine we have an airplane coming in to land. It’s unfortunately trying to do
so amidst a hot-air balloon festival, so it naturally wants to avoid colliding with any
(moving) balloons. In addition, there is both land and water, and the airplane needs

133
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to alight on land. We might also equip it with limited amounts of fuel to complete
its task. Here are some animations of the game:

• http://world.cs.brown.edu/1/projects/flight-lander/v9-success.swf

The airplane comes in to land succcessfully.

• http://world.cs.brown.edu/1/projects/flight-lander/v9-collide.swf

Uh oh—the airplane collides with a balloon!

• http://world.cs.brown.edu/1/projects/flight-lander/v9-sink.swf

Uh oh—the airplane lands in the water!

By the end, you will have written all the relevant portions of this program. Your
program will: animate the airplane to move autonomously; detect keystrokes and
adjust the airplane accordingly; have multiple moving balloons; detect collisions
between the airplane and balloons; check for landing on water and land; and ac-
count for the use of fuel. Phew: that’s a lot going on! Therefore, we won’t write it
all at once; instead, we’ll build it up bit-by-bit. But we’ll get there by the end.

13.1 About Reactive Animations

We are writing a program with two important interactive elements: it is an ani-
mation, meaning it gives the impression of motion, and it is reactive, meaning it
responds to user input. Both of these can be challenging to program, but Pyret pro-
vides a simple mechanism that accommodates both and integrates well with other
programming principles such as testing. We will learn about this as we go along.

The key to creating an animation is the Movie Principle. Even in the most
sophisticated movie you can watch, there is no motion (indeed, the very term
“movie”—short for “moving picture”—is a clever bit of false advertising). Rather,
there is just a sequence of still images shown in rapid succession, relying on the
human brain to create the impression of motion:

We are going to exploit the same idea: our animations will consist of a sequence
of individual images, and we will ask Pyret to show these in rapid succession. We
will then see how reactivity folds into the same process.

http://world.cs.brown.edu/1/projects/flight-lander/v9-success.swf
http://world.cs.brown.edu/1/projects/flight-lander/v9-collide.swf
http://world.cs.brown.edu/1/projects/flight-lander/v9-sink.swf
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13.2 Preliminaries

To begin with, we should inform Pyret that we plan to make use of both images
and animations. We load the libraries as follows:

import image as I
import reactors as R
This tells Pyret to load to these two libraries and bind the results to the correspond-
ing names, I and R. Thus, all image operations are obtained from I and animation
operations from R.

13.3 Version: Airplane Moving Across the Screen

We will start with the simplest version: one in which the airplane moves horizon-
tally across the screen. Watch this video:

http://world.cs.brown.edu/1/projects/flight-lander/v1.swf
First, here’s an image of an airplane: Have fun finding your preferred

airplane image! But don’t spend
too long on it, because we’ve
still got a lot of work to do.

http://world.cs.brown.edu/1/clipart/airplane-small.png
We can tell Pyret to load this image and give it a name as follows:

AIRPLANE-URL =
"http://world.cs.brown.edu/1/clipart/airplane-small.png"

AIRPLANE = I.image-url(AIRPLANE-URL)
Henceforth, when we refer to AIRPLANE, it will always refer to this image. (Try
it out in the interactions area!)

Now look at the video again. Watch what happens at different points in time.
What stays the same, and what changes? What’s common is the water and land,
which stay the same. What changes is the (horizontal) position of the airplane.

Note: The World State consists of everything that changes. Things that stay
the same do not need to get recorded in the World State.

We can now define our first World State:
World Definition: The World State is a number, representing the x-position of

the airplane.
Observe something important above:
Note: When we record a World State, we don’t capture only the type of the

values, but also their intended meaning.
Now we have a representation of the core data, but to generate the above ani-

mation, we still have to do several things:

1. Ask to be notified of the passage of time.

http://world.cs.brown.edu/1/projects/flight-lander/v1.swf
http://world.cs.brown.edu/1/clipart/airplane-small.png
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2. As time passes, correspondingly update the World State.

3. Given an updated World State, produce the corresponding visual display.

This sounds like a lot! Fortunately, Pyret makes this much easier than it sounds.
We’ll do these in a slightly different order than listed above.

13.3.1 Updating the World State

As we’ve noted, the airplane doesn’t actually “move”. Rather, we can ask Pyret
to notify us every time a clock ticks. If on each tick we place the airplane in an
appropriately different position, and the ticks happen often enough, we will get the
impression of motion.

Because the World State consists of just the airplane’s x-position, to move it
to the right, we simply increment its value. Let’s first give this constant distance a
name:

AIRPLANE-X-MOVE = 10
We will need to write a function that reflects this movement. Let’s first write some
test cases:

check:
move-airplane-x-on-tick(50) is 50 + AIRPLANE-X-MOVE
move-airplane-x-on-tick(0) is 0 + AIRPLANE-X-MOVE
move-airplane-x-on-tick(100) is 100 + AIRPLANE-X-MOVE

end

The function’s definition is now clear:

fun move-airplane-x-on-tick(w):
w + AIRPLANE-X-MOVE

end

And sure enough, Pyret will confirm that this function passes all of its tests.
Note: If you have prior experience programming animations and reactive pro-

grams, you will immediately notice an important difference: it’s easy to test parts
of your program in Pyret!

13.3.2 Displaying the World State

Now we’re ready to draw the game’s visual output. We produce an image that
consists of all the necessary components. It first helps to define some constants
representing the visual output:
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WIDTH = 800
HEIGHT = 500

BASE-HEIGHT = 50
WATER-WIDTH = 500
Using these, we can create a blank canvas, and overlay rectangles representing
water and land:

BLANK-SCENE = I.empty-scene(WIDTH, HEIGHT)

WATER = I.rectangle(WATER-WIDTH, BASE-HEIGHT, "solid", "blue")
LAND = I.rectangle(WIDTH - WATER-WIDTH, BASE-HEIGHT, "solid", "brown")

BASE = I.beside(WATER, LAND)

BACKGROUND =
I.place-image(BASE,

WIDTH / 2, HEIGHT - (BASE-HEIGHT / 2),
BLANK-SCENE)

Examine the value of BACKGROUND in the interactions area to confirm that it looks
right.

Do Now!

The reason we divide by two when placing BASE is because Pyret puts the
middle of the image at the given location. Remove the division and see what
happens to the resulting image.

Now that we know how to get our background, we’re ready to place the airplane
on it. The expression to do so looks roughly like this:

I.place-image(AIRPLANE,
# some x position,
50,
BACKGROUND)

but what x position do we use? Actually, that’s just what the World State repre-
sents! So we create a function out of this expression:

fun place-airplane-x(w):
I.place-image(AIRPLANE,

w,
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50,
BACKGROUND)

end

13.3.3 Observing Time (and Combining the Pieces)

Finally, we’re ready to put these pieces together.
We create a special kind of Pyret value called a reactor, which creates anima-

tions. We’ll start by creating a fairly simple kind of reactor, then grow it as the
program gets more sophisticated.

The following code creates a reactor named anim:

anim = reactor:
init: 0,
on-tick: move-airplane-x-on-tick,
to-draw: place-airplane-x

end

A reactor needs to be given an initial World State as well as handlers that tell it how
to react. Specifying on-tick tells Pyret to run a clock and, every time the clock
ticks (roughly thirty times a second), invoke the associated handler. The to-draw
handler is used by Pyret to refresh the visual display.

Having defined this reactor, we can run it in several ways that are useful for
finding errors, running scientific experiments, and so on. Our needs here are sim-
ple; we ask Pyret to just run the program on the screen interactively:

R.interact(anim)
This creates a running program where the airplane flies across the background!

That’s it! We’ve created our first animation. Now that we’ve gotten all the
preliminaries out of the way, we can go about enhancing it.

Exercise

If you want the airplane to appear to move faster, what can you change?

13.4 Version: Wrapping Around

When you run the preceding program, you’ll notice that after a while, the airplane
just disappears. This is because it has gone past the right edge of the screen; it is
still being “drawn”, but in a location that you cannot see. That’s not very useful!Also, after a long while you

might get an error because the
computer is being asked to
draw the airplane at a location
beyond what the graphics
system can manage.

Instead, when the airplane is about to go past the right edge of the screen, we’d
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like it to reappear on the left by a corresponding amount: “wrapping around”, as it
were.

Here’s the video for this version:
http://world.cs.brown.edu/1/projects/flight-lander/v2.swf
Let’s think about what we need to change. Clearly, we need to modify the func-

tion that updates the airplane’s location, since this must now reflect our decision to
wrap around. But the task of how to draw the airplane doesn’t need to change at
all! Similarly, the definition of the World State does not need to change, either.

Therefore, we only need to modify move-airplane-x-on-tick. The
function num-modulo does exactly what we need. That is, we want the x-location
to always be modulo the width of the scene:

fun move-airplane-wrapping-x-on-tick(x):
num-modulo(x + AIRPLANE-X-MOVE, WIDTH)

end

Notice that, instead of copying the content of the previous definition we can simply
reuse it:

fun move-airplane-wrapping-x-on-tick(x):
num-modulo(move-airplane-x-on-tick(x), WIDTH)

end

which makes our intent clearer: compute whatever position we would have had
before, but adapt the coordinate to remain within the scene’s width.

Well, that’s a proposed re-definition. Be sure to test this function thoroughly:
it’s tricker than you might think! Have you thought about all the cases? For in-
stance, what happens if the airplane is half-way off the right edge of the screen?

Exercise

Define quality tests for move-airplane-wrapping-x-on-tick.

Note: It is possible to leave move-airplane-x-on-tick unchanged and
perform the modular arithmetic in place-airplane-x instead. We choose
not to do that for the following reason. In this version, we really do think of the
airplane as circling around and starting again from the left edge (imagine the world
is a cylinder...). Thus, the airplane’s x-position really does keep going back down.
If instead we allowed the World State to increase monotonically, then it would
really be representing the total distance traveled, contradicting our definition of the
World State.

http://world.cs.brown.edu/1/projects/flight-lander/v2.swf
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Do Now!

After adding this function, run your program again. Did you see any change
in behavior?

If you didn’t. . . did you remember to update your reactor to use the new airplane-
moving function?

13.5 Version: Descending

Of course, we need our airplane to move in more than just one dimension: to get
to the final game, it must both ascend and descend as well. For now, we’ll focus on
the simplest version of this, which is a airplane that continuously descends. Here’s
a video:

http://world.cs.brown.edu/1/projects/flight-lander/v3.swf
Let’s again consider individual frames of this video. What’s staying the same?

Once again, the water and the land. What’s changing? The position of the airplane.
But, whereas before the airplane moved only in the x-dimension, now it moves in
both x and y. That immediately tells us that our definition of the World State is
inadequate, and must be modified.

We therefore define a new structure to hold this pair of data:

data Posn:
| posn(x, y)

end

Given this, we can revise our definition:
World Definition: The World State is a posn, representing the x-position and

y-position of the airplane on the screen.

13.5.1 Moving the Airplane

First, let’s consider move-airplane-wrapping-x-on-tick. Previously
our airplane moved only in the x-direction; now we want it to descend as well,
which means we must add something to the current y value:

AIRPLANE-Y-MOVE = 3
Let’s write some test cases for the new function. Here’s one:

check:
move-airplane-xy-on-tick(posn(10, 10)) is posn(20, 13)

end

http://world.cs.brown.edu/1/projects/flight-lander/v3.swf
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Another way to write the test would be:

check:
p = posn(10, 10)
move-airplane-xy-on-tick(p) is

posn(move-airplane-wrapping-x-on-tick(p.x),
move-airplane-y-on-tick(p.y))

end

Note: Which method of writing tests is better? Both! They each offer different
advantages:

• The former method has the benefit of being very concrete: there’s no ques-
tion what you expect, and it demonstrates that you really can compute the
desired answer from first principles.

• The latter method has the advantage that, if you change the constants in
your program (such as the rate of descent), seemingly correct tests do not
suddenly fail. That is, this form of testing is more about the relationships
between things rather than their precise values.

There is one more choice available, which often combines the best of both worlds:
write the answer as concretely as possible (the former style), but using constants to
compute the answer (the advantage of the latter style). For instance:

check:
p = posn(10, 10)
move-airplane-xy-on-tick(p) is
posn(num-modulo(p.x + AIRPLANE-X-MOVE, WIDTH),
p.y + AIRPLANE-Y-MOVE)

end

Exercise

Before you proceed, have you written enough test cases? Are you sure? Have
you, for instance, tested what should happen when the airplane is near the
edge of the screen in either or both dimensions? We thought not—go back
and write more tests before you proceed!

Using the design recipe, now define move-airplane-xy-on-tick. You
should end up with something like this:
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fun move-airplane-xy-on-tick(w):
posn(move-airplane-wrapping-x-on-tick(w.x),

move-airplane-y-on-tick(w.y))
end

Note that we have reused the existing function for the x-dimension and, corre-
spondingly, created a helper for the y dimension:

fun move-airplane-y-on-tick(y):
y + AIRPLANE-Y-MOVE

end

This may be slight overkill for now, but it does lead to a cleaner separation of
concerns, and makes it possible for the complexity of movement in each dimension
to evolve independently while keeping the code relatively readable.

13.5.2 Drawing the Scene

We have to also examine and update place-airplane-x. Our earlier defi-
nition placed the airplane at an arbitrary y-coordinate; now we have to take the
y-coordinate from the World State:

fun place-airplane-xy(w):
I.place-image(AIRPLANE,

w.x,
w.y,
BACKGROUND)

end

Notice that we can’t really reuse the previous definition because it hard-coded the
y-position, which we must now make a parameter.

13.5.3 Finishing Touches

Are we done? It would seem so: we’ve examined all the procedures that consume
and produce World State and updated them appropriately. Actually, we’re forget-
ting one small thing: the initial World State given to big-bang! If we’ve changed
the definition of World State, then we need to reconsider this parameter, too. (We
also need to pass the new handlers rather than the old ones.)

INIT-POS = posn(0, 0)

anim = reactor:
init: INIT-POS,
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on-tick: move-airplane-xy-on-tick,
to-draw: place-airplane-xy

end

R.interact(anim)

Exercise

It’s a little unsatisfactory to have the airplane truncated by the screen. You
can use I.image-width and I.image-height to obtain the dimen-
sions of an image, such as the airplane. Use these to ensure the airplane fits
entirely within the screen for the initial scene, and similarly in move-airplane-xy-on-tick.

13.6 Version: Responding to Keystrokes

Now that we have the airplane descending, there’s no reason it can’t ascend as
well. Here’s a video:

http://world.cs.brown.edu/1/projects/flight-lander/v4.swf
We’ll use the keyboard to control its motion: specifically, the up-key will make

it move up, while the down-key will make it descend even faster. This is easy to
support using what we already know: we just need to provide one more handler
using on-key. This handler takes two arguments: the first is the current value
of the world, while the second is a representation of which key was pressed. For
the purposes of this program, the only key values we care about are "up" and
"down".

This gives us a fairly comprehensive view of the core capabilities of reactors:

http://world.cs.brown.edu/1/projects/flight-lander/v4.swf
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We just define a group of functions to perform all our desired actions, and the
reactor strings them together. Some functions update world values (sometimes
taking additional information about a stimulus, such as the key pressed), while
others transform them into output (such as what we see on the screen).

Returning to our program, let’s define a constant representing how much dis-
tance a key represents:

KEY-DISTANCE = 10
Now we can define a function that alter’s the airplane’s position by that distance
depending on which key is pressed:

fun alter-airplane-y-on-key(w, key):
ask:
| key == "up" then: posn(w.x, w.y - KEY-DISTANCE)
| key == "down" then: posn(w.x, w.y + KEY-DISTANCE)
| otherwise: w

end
end

Do Now!

Why does this function definition contain

| otherwise: w
as its last condition?

Notice that if we receive any key other than the two we expect, we leave the
World State as it was; from the user’s perspective, this has the effect of just ignoring
the keystroke. Remove this last clause, press some other key, and watch what
happens!

No matter what you choose, be sure to test this! Can the airplane drift off the
top of the screen? How about off the screen at the bottom? Can it overlap with the
land or water?

Once we’ve written and thoroughly tested this function, we simply need to ask
Pyret to use it to handle keystrokes:

anim = reactor:
init: INIT-POS,
on-tick: move-airplane-xy-on-tick,
on-key: alter-airplane-y-on-key,
to-draw: place-airplane-xy

end
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Now your airplane moves not only with the passage of time but also in response to
your keystrokes. You can keep it up in the air forever!

13.7 Version: Landing

Remember that the objective of our game is to land the airplane, not to keep it
airborne indefinitely. That means we need to detect when the airplane reaches the
land or water level and, when it does, terminate the animation:

http://world.cs.brown.edu/1/projects/flight-lander/v5.swf
First, let’s try to characterize when the animation should halt. This means

writing a function that consumes the current World State and produces a boolean
value: true if the animation should halt, false otherwise. This requires a little
arithmetic based on the airplane’s size:

fun is-on-land-or-water(w):
w.y >= (HEIGHT - BASE-HEIGHT)

end

We just need to inform Pyret to use this predicate to automatically halt the reactor:

anim = reactor:
init: INIT-POS,
on-tick: move-airplane-xy-on-tick,
on-key: alter-airplane-y-on-key,
to-draw: place-airplane-xy,
stop-when: is-on-land-or-water

end

Exercise

When you test this, you’ll see it isn’t quite right because it doesn’t take ac-
count of the size of the airplane’s image. As a result, the airplane only halts
when it’s half-way into the land or water, not when it first touches down.
Adjust the formula so that it halts upon first contact.

Exercise

Extend this so that the airplane rolls for a while upon touching land, deceler-
ating according to the laws of physics.

http://world.cs.brown.edu/1/projects/flight-lander/v5.swf
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Exercise

Suppose the airplane is actually landing at a secret subterranean airbase. The
actual landing strip is actually below ground level, and opens up only when
the airplane comes in to land. That means, after landing, only the parts of the
airplane that stick above ground level would be visible. Implement this. As
a hint, consider modifying place-airplane-xy.

13.8 Version: A Fixed Balloon

Now let’s add a balloon to the scene. Here’s a video of the action:
http://world.cs.brown.edu/1/projects/flight-lander/v6.swf
Notice that while the airplane moves, everything else—including the balloon—

stays immobile. Therefore, we do not need to alter the World State to record the
balloon’s position. All we need to do is alter the conditions under which the pro-
gram halts: effectively, there is one more situation under which it terminates, and
that is a collision with the balloon.

When does the game halt? There are now two circumstances: one is contact
with land or water, and the other is contact with the balloon. The former remains
unchanged from what it was before, so we can focus on the latter.

Where is the balloon, and how do we represent where it is? The latter is easy to
answer: that’s what posns are good for. As for the former, we can decide where
it is:

BALLOON-LOC = posn(600, 300)
or we can let Pyret pick a random position:

BALLOON-LOC = posn(random(WIDTH), random(HEIGHT))

Exercise

Improve the random placement of the balloon so that it is in credible spaces
(e.g., not submerged).

Given a position for the balloon, we just need to detect collision. One simple
way is as follows: determine whether the distance between the airplane and the
balloon is within some threshold:

fun are-overlapping(airplane-posn, balloon-posn):
distance(airplane-posn, balloon-posn)

< COLLISION-THRESHOLD
end

http://world.cs.brown.edu/1/projects/flight-lander/v6.swf
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where COLLISION-THRESHOLD is some suitable constant computed based on
the sizes of the airplane and balloon images. (For these particular images, 75
works pretty well.)

What is distance? It consumes two posns and determines the Euclidean
distance between them:

fun distance(p1, p2):
fun square(n): n * n end
num-sqrt(square(p1.x - p2.x) + square(p1.y - p2.y))

end

Finally, we have to weave together the two termination conditions:

fun game-ends(w):
ask:

| is-on-land-or-water(w) then: true
| are-overlapping(w, BALLOON-LOC) then: true
| otherwise: false

end
end

and use it instead:

anim = reactor:
init: INIT-POS,
on-tick: move-airplane-xy-on-tick,
on-key: alter-airplane-y-on-key,
to-draw: place-airplane-xy,
stop-when: game-ends

end

Do Now!

Were you surprised by anything? Did the game look as you expected?

Odds are you didn’t see a balloon on the screen! That’s because we didn’t update
our display.

You will need to define the balloon’s image:

BALLOON-URL =
"http://world.cs.brown.edu/1/clipart/balloon-small.png"

BALLOON = I.image-url(BALLOON-URL)
and also update the drawing function:
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BACKGROUND =
I.place-image(BASE,

WIDTH / 2, HEIGHT - (BASE-HEIGHT / 2),
I.place-image(BALLOON,

BALLOON-LOC.x, BALLOON-LOC.y,
BLANK-SCENE))

Do Now!

Do you see how to write game-ends more concisely?

Here’s another version:

fun game-ends(w):
is-on-land-or-water(w) or are-overlapping(w, BALLOON-LOC)

end

13.9 Version: Keep Your Eye on the Tank

Now we’ll introduce the idea of fuel. In our simplified world, fuel isn’t necessary to
descend—gravity does that automatically—but it is needed to climb. We’ll assume
that fuel is counted in whole number units, and every ascension consumes one unit
of fuel. When you run out of fuel, the program no longer response to the up-arrow,
so you can no longer avoid either the balloon or water.

In the past, we’ve looked at still images of the game video to determine what
is changing and what isn’t. For this version, we could easily place a little gauge
on the screen to show the quantity of fuel left. However, we don’t on purpose, to
illustrate a principle.

Note: You can’t always determine what is fixed and what is changing just by
looking at the image. You have to also read the problem statement carefully, and
think about it in depth.

It’s clear from our description that there are two things changing: the position
of the airplane and the quantity of fuel left. Therefore, the World State must capture
the current values of both of these. The fuel is best represented as a single number.
However, we do need to create a new structure to represent the combination of
these two.

World Definition: The World State is a structure representing the airplane’s
current position and the quantity of fuel left.

Concretely, we will use this structure:
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data World:
| world(p, f)

end

Exercise

We could have also defined the World to be a structure consisting of three
components: the airplane’s x-position, the airplane’s y-position, and the quan-
tity of fuel. Why do we choose to use the representation above?

We can again look at each of the parts of the program to determine what can
stay the same and what changes. Concretely, we must focus on the functions that
consume and produce Worlds.

On each tick, we consume a world and compute one. The passage of time does
not consume any fuel, so this code can remain unchanged, other than having to
create a structure containing the current amount of fuel. Concretely:

fun move-airplane-xy-on-tick(w :: World):
world(

posn(
move-airplane-wrapping-x-on-tick(w.p.x),
move-airplane-y-on-tick(w.p.y)),

w.f)
end

Similarly, the function that responds to keystrokes clearly needs to take into ac-
count how much fuel is left:

fun alter-airplane-y-on-key(w, key):
ask:

| key == "up" then:
if w.f > 0:

world(posn(w.p.x, w.p.y - KEY-DISTANCE), w.f - 1)
else:

w # there’s no fuel, so ignore the keystroke
end

| key == "down" then:
world(posn(w.p.x, w.p.y + KEY-DISTANCE), w.f)

| otherwise: w
end

end
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Exercise

Updating the function that renders a scene. Recall that the world has two
fields; one of them corresponds to what we used to draw before, and the
other isn’t being drawn in the output.

Do Now!

What else do you need to change to get a working program?

You should have noticed that your initial world value is also incorrect because
it doesn’t account for fuel. What are interesting fuel values to try?

Exercise

Extend your program to draw a fuel gauge.

13.10 Version: The Balloon Moves, Too

Until now we’ve left our balloon immobile. Let’s now make the game more inter-
esting by letting the balloon move, as this video shows:

http://world.cs.brown.edu/1/projects/flight-lander/v8.swf
Obviously, the balloon’s location needs to also become part of the World State.
World Definition: The World State is a structure representing the plane’s cur-

rent position, the balloon’s current position, and the quantity of fuel left.
Here is a representation of the world state. As these states become more com-

plex, it’s important to add annotations so we can keep track of what’s what.

data World:
| world(p :: Posn, b :: Posn, f :: Number)

end

With this definition, we obviously need to re-write all our previous definitions.
Most of this is quite routine relative to what we’ve seen before. The only detail we
haven’t really specified is how the balloon is supposed to move: in what direction,
at what speed, and what to do at the edges. We’ll let you use your imagination for
this one! (Remember that the closer the balloon is to land, the harder it is to safely
land the plane.)

We thus have to modify:

• The background image (to remove the static balloon).

http://world.cs.brown.edu/1/projects/flight-lander/v8.swf
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• The drawing handler (to draw the balloon at its position).

• The timer handler (to move the balloon as well as the airplane).

• The key handler (to construct world data that leaves the balloon unchanged).

• The termination condition (to account for the balloon’s dynamic location).

Exercise

Modify each of the above functions, along with their test cases.

13.11 Version: One, Two, ..., Ninety-Nine Luftballons!

Finally, there’s no need to limit ourselves to only one balloon. How many is right?
Two? Three? Ten? ... Why fix any one number? It could be a balloon festival!

Similarly, many games have levels that become progressively harder; we could
do the same, letting the number of balloons be part of what changes across levels.
However, there is conceptually no big difference between having two balloons and
five; the code to control each balloon is essentially the same.

We need to represent a collection of balloons. We can use a list to represent
them. Thus:

World Definition: The World State is a structure representing the plane’s cur-
rent position, a list of balloon positions, and the quantity of fuel left.

You should now use the design recipe for lists of structures to rewrite the func-
tions. Notice that you’ve already written the function to move one balloon. What’s
left?

1. Apply the same function to each balloon in the list.

2. Determine what to do if two balloons collide.

For now, you can avoid the latter problem by placing each balloon sufficiently
spread apart along the x-dimension and letting them move only up and down.

Exercise

Introduce a concept of wind, which affects balloons but not the airplane. Afer
random periods of time, the wind blows with random speed and direction,
causing the ballooons to move laterally.
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Chapter 14

Examples, Testing, and Program
Checking

When we think through a problem, it is often useful to write down examples of
what we are trying to do. For example (see what we did there?), if we’re asked to
compute the [FILL]

There are, of course, many ways to write down examples. We could write
them on a board, on paper, or even as comments in a computer document. These
are all reasonable and indeed, often, the best way to begin working on a problem.
However, if we can write our examples in a precise form that a computer can
understand, we achieve two things:

• When we’re done writing our purported solution, we can have the computer
check whether we got it right.

• In the process of writing down our expectation, we often find it hard to ex-
press with the precision that a computer expects. Sometimes this is because
we’re still formulating the details and haven’t yet pinned them down, but
at other times it’s because we don’t yet understand the problem. In such
situations, the force of precision actually does us good, because it helps us
understand the weakness of our understanding.

14.1 From Examples to Tests

failure of tests can be due to
- the program being wrong - the example itself being wrong
when we find a bug, we
- find an example that captures the bug - add it to the program’s test suite

153
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so that if we make the same mistake again, we will catch it right away

14.2 More Refined Comparisons

Sometimes, a direct comparison via is isn’t enough for testing. We saw raises
in the last section for testing errors. However, when doing some computations,
especially involving math with approximations, we want to ask a different question.
For example, consider these tests for distance-to-origin:

check:
distance-to-origin(point(1, 1)) is ???

end

What can we check here? Typing this into the REPL, we can find that the
answer prints as 1.4142135623730951. That’s an approximation of the real
answer, which Pyret cannot represent exactly. But it’s hard to know that this precise
answer, to this decimal place, and no more, is the one we should expect up front,
and thinking through the answers is supposed to be the first thing we do!

Since we know we’re getting an approximation, we can really only check that
the answer is roughly correct, not exactly correct. If we can check that the answer
to distance-to-origin(point(1, 1)) is around, say, 1.41, and can do
the same for some similar cases, that’s probably good enough for many applica-
tions, and for our purposes here. If we were calculating orbital dynamics, we might
demand higher precision, but note that we’d still need to pick a cutoff! Testing for
inexact results is a necessary task.

Let’s first define what we mean by “around” with one of the most precise ways
we can, a function:

fun around(actual :: Number, expected :: Number) -> Boolean:
doc: "Return whether actual is within 0.01 of expected"
num-abs(actual - expected) < 0.01

where:
around(5, 5.01) is true
around(5.01, 5) is true
around(5.02, 5) is false
around(num-sqrt(2), 1.41) is true

end

The is form now helps us out. There is special syntax for supplying a user-
defined function to use to compare the two values, instead of just checking if they
are equal:
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check:
5 is%(around) 5.01
num-sqrt(2) is%(around) 1.41
distance-to-origin(point(1, 1)) is%(around) 1.41

end

Adding %(something) after is changes the behavior of is. Normally, it
would compare the left and right values for equality. If something is provided with
%, however, it instead passes the left and right values to the provided function (in
this example around). If the provided function produces true, the test passes, if
it produces false, the test fails. This gives us the control we need to test functions
with predictable approximate results.

Exercise

Extend the definition of distance-to-origin to include polar points.

Exercise

(This might save you a Google search: polar conversions.) Use the design
recipe to write x-component and y-component, which return the x and
y Cartesian parts of the point (which you would need, for example, if you
were plotting them on a graph). Read about num-sin and other functions
you’ll need at the Pyret number documentation.

Exercise

Write a data definition called Pay for pay types that includes both hourly
employees, whose pay type includes an hourly rate, and salaried employees,
whose pay type includes a total salary for the year. Use the design recipe to
write a function called expected-weekly-wages that takes a Pay, and
returns the expected weekly salary: the expected weekly salary for an hourly
employee assumes they work 40 hours, and the expected weekly salary for a
salaried employee is 1/52 of their salary.

14.3 When Tests Fail

Suppose we’ve written the function sqrt, which computes the square root of a
given number. We’ve written some tests for this function. We run the program,
and find that a test fails. There are two obvious reasons why this can happen.

http://en.wikipedia.org/wiki/Polar_coordinate_system#Converting_between_polar_and_Cartesian_coordinates
http://www.pyret.org/docs/latest/numbers.html
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Do Now!

What are the two obvious reasons?

The two reasons are, of course, the two “sides” of the test: the problem could
be with the values we’ve written or with the function we’ve written. For instance,
if we’ve written

sqrt(4) is 1.75
then the fault clearly lies with the values (because 1.752 is clearly not 4). On the
other hand, if it fails the test

sqrt(4) is 2
then the odds are that we’ve made an error in the definition of sqrt instead, and
that’s what we need to fix.

Note that there is no way for the computer to tell what went wrong. When it
reports a test failure, all it’s saying is that there is an inconsistency between the
program and the tests. The computer is not passing judgment on which one is
“correct”, because it can’t do that. That is a matter for human judgment.For this reason, we’ve been

doing research on peer review
of tests, so students can help
one another review their tests
before they begin writing
programs.

Actually...not so fast. There’s one more possibility we didn’t consider: the
third, not-so-obvious reason why a test might fail. Return to this test:

sqrt(4) is 2
Clearly the inputs and outputs are correct, but it could be that the definition of
sqrt is also correct, and yet the test fails.

Do Now!

Do you see why?

Depending on how we’ve programmed sqrt, it might return the root -2 in-
stead of 2. Now -2 is a perfectly good answer, too. That is, neither the function
nor the particular set of test values we specified is inherently wrong; it’s just that
the function happens to be a relation, i.e., it maps one input to multiple outputs
(that is,

√
4 = ±2). The question now is how to write the test properly.

14.4 Oracles for Testing

In other words, sometimes what we want to express is not a concrete input-output
pair, but rather check that the output has the right relationship to the input. Con-
cretely, what might this be in the case of sqrt? We hinted at this earlier when we

http://cs.brown.edu/~sk/Publications/Papers/Published/pkf-ifpr-tests-tf-prog/
http://cs.brown.edu/~sk/Publications/Papers/Published/pkf-ifpr-tests-tf-prog/
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said that 1.75 clearly can’t be right, because squaring it does not yield 4. That
gives us the general insight: that a number is a valid root (note the use of “a” in-
stead of “the”) if squaring it yields the original number. That is, we might write a
function like this:

fun is-sqrt(n):
n-root = sqrt(n)
n == (n-root * n-root)

end

and then our test looks like

check:
is-sqrt(4) is true

end

Unfortunately, this has an awkward failure case. If sqrt does not produce a num-
ber that is in fact a root, we aren’t told what the actual value is; instead, is-sqrt
returns false, and the test failure just says that false (what is-sqrt returns) is
not true (what the test expects)—which is both absolutely true and utterly use-
less.

Fortunately, Pyret has a better way of expressing the same check. Instead of
is, we can write satisfies, and then the value on the left must satisfy the
predicate on the right. Concretely, this looks like:

fun check-sqrt(n):
lam(n-root):

n == (n-root * n-root)
end

end

which lets us write:

check:
sqrt(4) satisfies check-sqrt(4)

end

Now, if there’s a failure, we learn of the actual value produced by sqrt(4) that
failed to satisfy the predicate.

Consider the following problem: given a word (such as a name), we would
like to spell it using the symbols of atoms (ignoring upper- and lower-case). This
function, call it elemental, consumes a string and produces a list of strings such
that

• each string in the output is an atomic symbol, and
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• the concatenation of the strings in the output yields the input.

For instance, consider my name; it can be spelled as [list: "S", "H", "Ri", "Ra", "M"]
(for [FILL], respectively). Thus we would write:

check:
elemental("Shriram") is [list: "S", "H", "Ri", "Ra", "M"]

end

Now consider another example: [FILL]. We can clearly see that this breaks
down as

check:
elemental("...") is [list: ...]

end

14.5 Testing Erroneous Programs

- use RAISES to check erroneous code
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Functions as Data

It’s interesting to consider how expressive the little programming we’ve learned
so far can be. To illustrate this, we’ll work through a few exercises of interesting
concepts we can express using just functions as values. We’ll write two quite
different things, then show how they converge nicely.

15.1 A Little Calculus

If you’ve studied the differential calculus, you’ve come across curious sytactic
statements such as this:

d

dx
x2 = 2x

Let’s unpack what this means: the d/dx, the x2, and the 2x.
First, let’s take on the two expressions; we’ll discuss one, and the discussion

will cover the other as well. The correct response to “what does x2 mean?” is, of
course, an error: it doesn’t mean anything, because x is an unbound identifier.

So what is it intended to mean? The intent, clearly, is to represent the function
that squares its input, just as 2x is meant to be the function that doubles its input.
We have nicer ways of writing those:

fun square(x :: Number) -> Number: x * x end
fun double(x :: Number) -> Number: 2 * x end

and what we’re really trying to say is that the d/dx (whatever that is) of square
is double. We’re assuming functions of

arity one in the variable that is
changing.

So now let’s unpack d/dx, starting with its type. As the above example illus-
trates, d/dx is really a function from functions to functions. That is, we can write
its type as follows:

159
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d-dx :: ((Number -> Number) -> (Number -> Number))
(This type might explain why your calculus course never explained this operation
this way—though it’s not clear that obscuring its true meaning is any better for
your understanding.)

Let us now implement d-dx. We’ll implement numerical differentiation, though
in principle we could also implement symbolic differentiation—using rules you
learned, e.g., given a polynomial, multiply by the exponent and reduce the expo-
nent by one—with a representation of expressions [section 24.1].

In general, numeric differentiation of a function at a point yields the value of
the derivative at that point. We have a handy formula for it: the derivative of f at x
is

f(x+ ε)− f(x)

ε

as ε goes to zero in the limit. For now we’ll give the infinitesimal a small but fixed
value, and later [section 15.4] see how we can improve on this.

epsilon = 0.001
Let’s now try to translate the above formula into Pyret:

fun d-dx(f :: (Number -> Number)) -> (Number -> Number):
(f(x + epsilon) - f(x)) / epsilon

end

Do Now!

What’s the problem with the above definition?

If you didn’t notice, Pyret will soon tell you: x isn’t bound. Indeed, what is
x? It’s the point at which we’re trying to compute the numeric derivative. That is,
d-dx needs to return not a number but a function (as the type indicates) that will
consume this x:“Lambdas are relegated to

relative obscurity until Java
makes them popular by not
having them.”—James Iry, A
Brief, Incomplete, and Mostly
Wrong History of Programming
Languages

fun d-dx(f :: (Number -> Number)) -> (Number -> Number):
lam(x :: Number) -> Number:
(f(x + epsilon) - f(x)) / epsilon

end
end

Sure enough, this definition now works. We can, for instance, test it as follows
(note the use of num-floor to avoid numeric precision issues from making our
tests appear to fail):

https://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
https://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
https://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
https://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
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d-dx-square = d-dx(square)

check:
ins = [list: 0, 1, 10, 100]
for map(n from ins):

num-floor(d-dx-square(n))
end
is
for map(n from ins):

num-floor(double(n))
end

end

Now we can return to the original example that launched this investigation: what
the sloppy and mysterious notation of math is really trying to say is,

d-dx(lam(x): x * x end) = lam(x): 2 * x end

or, in the notation of section 16.7,
d

dx
[x→ x2] = [x→ 2x]

Pity math textbooks for not wanting to tell us the truth!

15.2 A Helpful Shorthand for Anonymous Functions

Pyret offers a shorter syntax for writing anonymous functions. Though, stylisti-
cally, we generally avoid it so that our programs don’t become a jumble of special
characters, sometimes it’s particularly convenient, as we will see below. This syn-
tax is

{(a): b}
where a is zero or more arguments and b is the body. For instance, we can write
lam(x): x * x end as

{(x): x * x}
where we can see the benefit of brevity. In particular, note that there is no need
for end, because the braces take the place of showing where the expression begins
and ends. Similarly, we could have written d-dx as

fun d-dx-short(f):
{(x): (f(x + epsilon) - f(x)) / epsilon}

end
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but many readers would say this makes the function harder to read, because the
prominent lam makes clear that d-dx returns an (anonymous) function, whereas
this syntax obscures it. Therefore, we will usually only use this shorthand syntax
for “one-liners”.

15.3 Streams From Functions

People typically think of a function as serving one purpose: to parameterize an
expression. While that is both true and the most common use of a function, it does
not justify having a function of no arguments, because that clearly parameterizes
over nothing at all. Yet functions of no argument also have a use, because functions
actually serve two purposes: to parameterize, and to suspend evaluation of the body
until the function is applied. In fact, these two uses are orthogonal, in that one can
employ one feature without the other. In section 26.3.6 we see one direction of
this: parameterized functions that are used immediately, so that we employ only
abstraction and not delay. Below, we will see the other: delay without abstraction.

Let’s consider the humble list. A list can be only finitely long. However,
there are many lists (or sequences) in nature that have no natural upper bound:
from mathematical objects (the sequence of natural numbers) to natural ones (the
sequence of hits to a Web site). Rather than try to squeeze these unbounded lists
into bounded ones, let’s look at how we might represent and program over these
unbounded lists.

First, let’s write a program to compute the sequence of natural numbers:

fun nats-from(n):
link(n, nats-from(n + 1))

end

Do Now!

Does this program have a problem?

While this represents our intent, it doesn’t work: running it—e.g., nats-from(0)—
creates an infinite loop evaluating nats-from for every subsequent natural num-
ber. In other words, we want to write something very like the above, but that
doesn’t recur until we want it to, i.e., on demand. In other words, we want the rest
of the list to be lazy.

This is where our insight into functions comes in. A function, as we have just
noted, delays evaluation of its body until it is applied. Therefore, a function would,
in principle, defer the invocation of nats-from(n + 1) until it’s needed.
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Except, this creates a type problem: the second argument to link needs to
be a list, and cannot be a function. Indeed, because it must be a list, and every
value that has been constructed must be finite, every list is finite and eventually
terminates in empty. Therefore, we need a new data structure to represent the
links in these lazy lists (also known as streams):

<stream-type-def> ::=

data Stream<T>:
| lz-link(h :: T, t :: ( -> Stream<T>))

end
where the annotation ( -> Stream<T>) means a function from no arguments
(hence the lack of anything before ->), also known as a thunk. Note that the way
we have defined streams they must be infinite, since we have provided no way to
terminate them.

Let’s construct the simplest example we can, a stream of constant values:

ones = lz-link(1, lam(): ones end)

Pyret will actually complain about this definition. Note that the list equivalent of
this also will not work:

ones = link(1, ones)

because ones is not defined at the point of definition, so when Pyret evaluates
link(1, ones), it complains that ones is not defined. However, it is being
overly conservative with our former definition: the use of ones is “under a lam”,
and hence won’t be needed until after the definition of ones is done, at which
point ones will be defined. We can indicate this to Pyret by using the keyword
rec:

rec ones = lz-link(1, lam(): ones end)

To understand more about recursive definitions, see section 21.3.2. Note that in
Pyret, every fun implicitly has a rec beneath it, which is why we can create
recursive functions with aplomb.
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Exercise

Earlier we said that we can’t write

ones = link(1, ones)
What if we tried to write

rec ones = link(1, ones)
instead? Does this work and, if so, what value is ones bound to? If it doesn’t
work, does it fail to work for the same reason as the definition without the
rec?

Henceforth, we will use the shorthand [section 15.2] instead. Therefore, we
can rewrite the above definition as:

rec ones = lz-link(1, {(): ones})
Notice that {(): ...} defines an anonymous function of no arguments. You
can’t leave out the ()! If you do, Pyret will get confused about what your program
means.

Because functions are automatically recursive, when we write a function to
create a stream, we don’t need to use rec. Consider this example:

fun nats-from(n :: Number):
lz-link(n, {(): nats-from(n + 1)})

end
with which we can define the natural numbers:

nats = nats-from(0)
Note that the definition of nats is not recursive itself—the recursion is inside
nats-from—so we don’t need to use rec to define nats.

Do Now!

Earlier, we said that every list is finite and hence eventually terminates. How
does this remark apply to streams, such as the definition of ones or nats
above?

The description of ones is still a finite one; it simply represents the potential
for an infinite number of values. Note that:

1. A similar reasoning doesn’t apply to lists because the rest of the list has
already been constructed; in contrast, placing a function there creates the
potential for a potentially unbounded amount of computation to still be forth-
coming.
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2. That said, even with streams, in any given computation, we will create only
a finite prefix of the stream. However, we don’t have to prematurely decide
how many; each client and use is welcome to extract less or more, as needed.

Now we’ve created multiple streams, but we still don’t have an easy way to
“see” one. First we’ll define the traditional list-like selectors. Getting the first
element works exactly as with lists:

fun lz-first<T>(s :: Stream<T>) -> T: s.h end

In contrast, when trying to access the rest of the stream, all we get out of the data
structure is a thunk. To access the actual rest, we need to force the thunk, which of
course means applying it to no arguments:

fun lz-rest<T>(s :: Stream<T>) -> Stream<T>: s.t() end

This is useful for examining individual values of the stream. It is also useful
to extract a finite prefix of it (of a given size) as a (regular) list, which would be
especially handy for testing. Let’s write that function:

fun take<T>(n :: Number, s :: Stream<T>) -> List<T>:
if n == 0:

empty
else:

link(lz-first(s), take(n - 1, lz-rest(s)))
end

end

If you pay close attention, you’ll find that this body is not defined by cases over the
structure of the (stream) input—instead, it’s defined by the cases of the definition
of a natural number (zero or a successor). We’ll return to this below (<lz-map2-
def>).

Now that we have this, we can use it for testing. Note that usually we use our
data to test our functions; here, we’re using this function to test our data:

check:
take(10, ones) is map(lam(_): 1 end, range(0, 10))
take(10, nats) is range(0, 10)
take(10, nats-from(1)) is map((_ + 1), range(0, 10))

end

The notation (_ + 1) defines
a Pyret function of one
argument that adds 1 to the
given argument.

Let’s define one more function: the equivalent of map over streams. For rea-
sons that will soon become obvious, we’ll define a version that takes two lists and
applies the first argument to them pointwise:
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<lz-map2-def> ::=
fun lz-map2<A, B, C>(

f :: (A, B -> C),
s1 :: Stream<A>,
s2 :: Stream<B>) -> Stream<C>:

lz-link(
f(lz-first(s1), lz-first(s2)),
{(): lz-map2(f, lz-rest(s1), lz-rest(s2))})

end
Now we can see our earlier remark about the structure of the function driven home
especially clearly. Whereas a traditional map over lists would have two cases, here
we have only one case because the data definition (<stream-type-def>) has only
one case! What is the consequence of this? In a traditional map, one case looks
like the above, but the other case corresponds to the empty input, for which it
produces the same output. Here, because the stream never terminates, mapping
over it doesn’t either, and the structure of the function reflects this.This raises a much subtler

problem: if the function’s body
doesn’t have base- and
inductive-cases, how can we
perform an inductive proof over
it? The short answer is we
can’t: we must instead useNcoinduction.

Why did we define lz-map2 instead of lz-map? Because it enables us to
write the following:

rec fibs =
lz-link(0,

{(): lz-link(1,
{(): lz-map2({(a :: Number, b :: Number): a + b},

fibs,
lz-rest(fibs))})})

from which, of course, we can extract as many Fibonacci numbers as we want!

check:
take(10, fibs) is [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

end

Exercise

Define the equivalent of map, filter, and fold for streams.

Streams and, more generally, infinite data structures that unfold on demand are
extremely valuable in programming. Consider, for instance, the possible moves
in a game. In some games, this can be infinite; even if it is finite, for interesting
games the combinatorics mean that the tree is too large to feasibly store in mem-
ory. Therefore, the programmer of the computer’s intelligence must unfold the
game tree on demand. Programming it by using the encoding we have described
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above means the program describes the entire tree, lazily, and the tree unfolds au-
tomatically on demand, relieving the programmer of the burden of implementing
such a strategy.

In some languages, such as Haskell, lazy evaluation is built in by default. In
such a language, there is no need to use thunks. However, lazy evaluation places
other burdens on the language [REF].

15.4 Combining Forces: Streams of Derivatives

When we defined d-dx, we set epsilon to an arbitrary, high value. We could
instead think of epsilon as itself a stream that produces successively finer values;
then, for instance, when the difference in the value of the derivative becomes small
enough, we can decide we have a sufficient approximation to the derivative.

The first step is, therefore, to make epsilon some kind of parameter rather
than a global constant. That leaves open what kind of parameter it should be (num-
ber or stream?) as well as when it should be supplied.

It makes most sense to consume this parameter after we have decided what
function we want to differentiate and at what value we want its derivative; after all,
the stream of epsilon values may depend on both. Thus, we get:

fun d-dx(f :: (Number -> Number)) ->
(Number -> (Number -> Number)):

lam(x :: Number) -> (Number -> Number):
lam(epsilon :: Number) -> Number:

(f(x + epsilon) - f(x)) / epsilon
end

end
end

with which we can return to our square example:

d-dx-square = d-dx(square)
Note that at this point we have simply redefined d-dx without any reference to
streams: we have merely made a constant into a parameter.

Now let’s define the stream of negative powers of ten:

tenths = block:
fun by-ten(d):
new-denom = d / 10
lz-link(new-denom, lam(): by-ten(new-denom) end)

end



168 CHAPTER 15. FUNCTIONS AS DATA

by-ten(1)
end

so that

check:
take(3, tenths) is [list: 1/10, 1/100, 1/1000]

end

For concreteness, let’s pick an abscissa at which to compute the numeric derivative
of square—say 10:

d-dx-square-at-10 = d-dx-square(10)
Recall, from the types, that this is now a function of type (Number -> Number):
given a value for epsilon, it computes the derivative using that value. We know,
analytically, that the value of this derivative should be 20. We can now (lazily)
map tenths to provide increasingly better approximations for epsilon and see
what happens:

lz-map(d-dx-square-at-10, tenths)
Sure enough, the values we obtain are 20.1, 20.01, 20.001, and so on: pro-
gressively better numerical approximations to 20.

Exercise

Extend the above program to take a tolerance, and draw as many values from
the epsilon stream as necessary until the difference between successive
approximations of the derivative fall within this tolerance.



Chapter 16

Predicting Growth

We will now commence the study of determining how long a computation takes.
We’ll begin with a little (true) story.

16.1 A Little (True) Story

My student Debbie recently wrote tools to analyze data for a startup. The company
collects information about product scans made on mobile phones, and Debbie’s
analytic tools classified these by product, by region, by time, and so on. As a good
programmer, Debbie first wrote synthetic test cases, then developed her programs
and tested them. She then obtained some actual test data from the company, broke
them down into small chunks, computed the expected answers by hand, and tested
her programs again against these real (but small) data sets. At the end of this she
was ready to declare the programs ready.

At this point, however, she had only tested them for functional correctness.
There was still a question of how quickly her analytical tools would produce an-
swers. This presented two problems:

• The company was rightly reluctant to share the entire dataset with outsiders,
and in turn we didn’t want to be responsible for carefully guarding all their
data.

• Even if we did get a sample of their data, as more users used their product,
the amount of data they had was sure to grow.

We therefore got only a sampling of their full data, and from this had to make
some prediction on how long it would take to run the analytics on subsets (e.g.,
those corresponding to just one region) or all of their data set, both today and as it
grew over time.

169



170 CHAPTER 16. PREDICTING GROWTH

Debbie was given 100,000 data points. She broke them down into input sets of
10, 100, 1,000, 10,000, and 100,000 data points, ran her tools on each input size,
and plotted the result.

From this graph we have a good bet at guessing how long the tool would take
on a dataset of 50,000. It’s much harder, however, to be sure how long it would take
on datasets of size 1.5 million or 3 million or 10 million. We’ve already explainedThese processes are

respectively called interpolation
and extrapolation.

why we couldn’t get more data from the company. So what could we do?
As another problem, suppose we have multiple implementations available. When

we plot their running time, say the graphs look like this, with red, green, and blue
each representing different implementations. On small inputs, suppose the running
times look like this:

This doesn’t seem to help us distinguish between the implementations. Now
suppose we run the algorithms on larger inputs, and we get the following graphs:
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Now we seem to have a clear winner (red), though it’s not clear there is much
to give between the other two (blue and green). But if we calculate on even larger
inputs, we start to see dramatic differences:
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In fact, the functions that resulted in these lines were the same in all three
figures. What these pictures tell us is that it is dangerous to extrapolate too much
from the performance on small inputs. If we could obtain closed-form descriptions
of the performance of computations, it would be nice if we could compare them
better. That is what we will now do.

16.2 The Analytical Idea

With many physical processes, the best we can do is obtain as many data points as
possible, extrapolate, and apply statistics to reason about the most likely outcome.
Sometimes we can do that in computer science, too, but fortunately we computer
scientists have an enormous advantage over most other sciences: instead of mea-
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suring a black-box process, we have full access to its internals, namely the source
code. This enables us to apply analytical methods. The answer we compute this “Analytical” means applying

algebraic and other
mathematical methods to make
predictive statements about a
process without running it.

way is complementary to what we obtain from the above experimental analysis,
and in practice we will usually want to use a combination of the two to arrive a
strong understanding of the program’s behavior.

The analytical idea is startlingly simple. We look at the source of the program
and list the operations it performs. For each operation, we look up what it costs. We are going to focus on one

kind of cost, namely running
time. There are many other
other kinds of costs one can
compute. We might naturally be
interested in space (memory)
consumed, which tells us how
big a machine we need to buy.
We might also care about
power, this tells us the cost of
our energy bills, or of
bandwidth, which tells us what
kind of Internet connection we
will need. In general, then,
we’re interested in resource
consumption. In short, don’t
make the mistake of equating
“performance” with “speed”:
the costs that matter depend on
the context in which the
application runs.

We add up these costs for all the operations. This gives us a total cost for the
program.

Naturally, for most programs the answer will not be a constant number. Rather,
it will depend on factors such as the size of the input. Therefore, our answer is
likely to be an expression in terms of parameters (such as the input’s size). In other
words, our answer will be a function.

There are many functions that can describe the running-time of a function.
Often we want an upper bound on the running time: i.e., the actual number of
operations will always be no more than what the function predicts. This tells us
the maximum resource we will need to allocate. Another function may present a
lower bound, which tells us the least resource we need. Sometimes we want an
average-case analysis. And so on. In this text we will focus on upper-bounds, but
keep in mind that all these other analyses are also extremely valuable.

Exercise

It is incorrect to speak of “the” upper-bound function, because there isn’t just
one. Given one upper-bound function, can you construct another one?

16.3 A Cost Model for Pyret Running Time

We begin by presenting a cost model for the running time of Pyret programs. We
are interested in the cost of running a program, which is tantamount to studying the
expressions of a program. Simply making a definition does not cost anything; the
cost is incurred only when we use a definition.

We will use a very simple (but sufficiently accurate) cost model: every op-
eration costs one unit of time in addition to the time needed to evaluate its sub-
expressions. Thus it takes one unit of time to look up a variable or to allocate a
constant. Applying primitive functions also costs one unit of time. Everything else
is a compound expression with sub-expressions. The cost of a compound expres-
sion is one plus that of each of its sub-expressions. For instance, the running time
cost of the expression e1 + e2 (for some sub-expressions e1 and e2) is the run-
ning time for e1 + the running time for e2 + 1. Thus the expression 17 + 29 has
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a cost of 3 (one for each sub-expression and one for the addition); the expression
1 + (7 * (2 / 9)) costs 7.

As you can see, there are two big approximations here:

• First, we are using an abstract rather than concrete notion of time. This is
unhelpful in terms of estimating the so-called “wall clock” running time of a
program, but then again, that number depends on numerous factors—not just
what kind of processor and how much memory you have, but even what other
tasks are running on your computer at the same time. In contrast, abstract
time units are more portable.

• Second, not every operation takes the same number of machine cycles, whereas
we have charged all of them the same number of abstract time units. As long
as the actual number of cycles each one takes is bounded by a constant factor
of the number taken by another, this will not pose any mathematical prob-
lems for reasons we will soon understand [section 16.8].

Of course, it is instructive—after carefully settting up the experimental conditions—
to make an analytical prediction of a program’s behavior and then verify it against
what the implementation actually does. If the analytical prediction is accurate, we
can reconstruct the constant factors hidden in our calculations and thus obtain very
precise wall-clock time bounds for the program.

16.4 The Size of the Input
We gloss over the size of a
number, treating it as constant.
Observe that the value of a
number is exponentially larger
than its size: n digits in base b
can represent bn numbers.
Though irrelevant here, when
numbers are central—e.g.,
when testing primality—the
difference becomes critical! We
will return to this briefly later
[section 22.3.1.3].

It can be subtle to define the size of the argument. Suppose a function consumes
a list of numbers; it would be natural to define the size of its argument to be the
length of the list, i.e., the number of links in the list. We could also define it to
be twice as large, to account for both the links and the individual numbers (but
as we’ll see [section 16.8], constants usually don’t matter). But suppose a function
consumes a list of music albums, and each music album is itself a list of songs, each
of which has information about singers and so on. Then how we measure the size
depends on what part of the input the function being analyzed actually examines.
If, say, it only returns the length of the list of albums, then it is indifferent to what
each list element contains [section 9.9], and only the length of the list of albums
matters. If, however, the function returns a list of all the singers on every album,
then it traverses all the way down to individual songs, and we have to account for
all these data. In short, we care about the size of the data potentially accessed by
the function.
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16.5 The Tabular Method for Singly-Structurally-Recursive
Functions

Given sizes for the arguments, we simply examine the body of the function and add
up the costs of the individual operations. Most interesting functions are, however,
conditionally defined, and may even recur. Here we will assume there is only one
structural recursive call. We will get to more general cases in a bit [section 16.6].

When we have a function with only one recursive call, and it’s structural,
there’s a handy technique we can use to handle conditionals. We will set up a This idea is due to Prabhakar

Ragde.table. It won’t surprise you to hear that the table will have as many rows as the
cond has clauses. But instead of two columns, it has seven! This sounds daunting,
but you’ll soon see where they come from and why they’re there.

For each row, fill in the columns as follows:

1. |Q|: the number of operations in the question

2. #Q: the number of times the question will execute

3. TotQ: the total cost of the question (multiply the previous two)

4. |A|: the number of operations in the answer

5. #A: the number of times the answer will execute

6. TotA: the total cost of the answer (multiply the previous two)

7. Total: add the two totals to obtain an answer for the clause

Finally, the total cost of the cond expression is obtained by summing the Total
column in the individual rows.

In the process of computing these costs, we may come across recursive calls
in an answer expression. So long as there is only one recursive call in the entire
answer, ignore it.

Exercise

Once you’ve read the material on section 16.6, come back to this and justify
why it is okay to just skip the recursive call. Explain in the context of the
overall tabular method.
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Exercise

Excluding the treatment of recursion, justify (a) that these columns are indi-
vidually accurate (e.g., the use of additions and multiplications is appropri-
ate), and (b) sufficient (i.e., combined, they account for all operations that
will be performed by that cond clause).

It’s easiest to understand this by applying it to a few examples. First, let’s
consider the len function, noting before we proceed that it does meet the criterion
of having a single recursive call where the argument is structural:

fun len(l):
cases (List) l:

| empty => 0
| link(f, r) => 1 + len(r)

end
end

Let’s compute the cost of running len on a list of length k (where we are only
counting the number of links in the list, and ignoring the content of each first
element (f), since len ignores them too).

Because the entire body of len is given by a conditional, we can proceed
directly to building the table.

Let’s consider the first row. The question costs three units (one each to evaluate
the implicit empty-ness predicate, l, and to apply the former to the latter). This
is evaluated once per element in the list and once more when the list is empty, i.e.,
k + 1 times. The total cost of the question is thus 3(k + 1). The answer takes one
unit of time to compute, and is evaluated only once (when the list is empty). Thus
it takes a total of one unit, for a total of 3k + 4 units.

Now for the second row. The question again costs three units, and is evaluated
k times. The answer involves two units to evaluate the rest of the list l.rest,
which is implicitly hidden by the naming of r, two more to evaluate and apply
1 +, one more to evaluate len...and no more, because we are ignoring the time
spent in the recursive call itself. In short, it takes seven units of time (in addition to
the recursion we’ve chosen to ignore).

In tabular form:
|Q| #Q TotQ |A| #A TotA Total
3 k + 1 3(k + 1) 1 1 1 3k + 4
3 k 3k 7 k 7k 10k

Adding, we get 13k+ 4. Thus running len on a k-element list takes 13k+ 4 units
of time.
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Exercise

How accurate is this estimate? If you try applying len to different sizes of
lists, do you obtain a consistent estimate for k?

16.6 Creating Recurrences

We will now see a systematic way of analytically computing the time of a program.
Suppose we have only one function f. We will define a function, T , to compute an
upper-bound of the time of f. T takes as many parameters as f does. The param- In general, we will have one

such cost function for each
function in the program. In
such cases, it would be useful to
give a different name to each
function to easily tell them
apart. Since we are looking at
only one function for now, we’ll
reduce notational overhead by
having only one T .

eters to T represent the sizes of the corresponding arguments to f. Eventually we
will want to arrive at a closed form solution to T , i.e., one that does not refer to T
itself. But the easiest way to get there is to write a solution that is permitted to refer
to T , called a recurrence relation, and then see how to eliminate the self-reference
[section 16.10].

We repeat this procedure for each function in the program in turn. If there are
many functions, first solve for the one with no dependencies on other functions,
then use its solution to solve for a function that depends only on it, and progress
thus up the dependency chain. That way, when we get to a function that refers
to other functions, we will already have a closed-form solution for the referred
function’s running time and can simply plug in parameters to obtain a solution.

Exercise

The strategy outlined above doesn’t work when there are functions that de-
pend on each other. How would you generalize it to handle this case?

The process of setting up a recurrence is easy. We simply define the right-hand-
side of T to add up the operations performed in f’s body. This is straightforward
except for conditionals and recursion. We’ll elaborate on the treatment of condi-
tionals in a moment. If we get to a recursive call to f on the argument a, in the
recurrence we turn this into a (self-)reference to T on the size of a.

For conditionals, we use only the |Q| and |A| columns of the corresponding
table. Rather than multiplying by the size of the input, we add up the operations that
happen on one invocation of f other than the recursive call, and then add the cost of
the recursive call in terms of a reference to T . Thus, if we were doing this for len
above, we would define T (k)—the time needed on an input of length k—in two
parts: the value of T (0) (when the list is empty) and the value for non-zero values
of k. We know that T (0) = 4 (the cost of the first conditional and its corresponding
answer). If the list is non-empty, the cost is T (k) = 3 + 3 + 7 + T (k − 1)
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(respectively from the first question, the second question, the remaining operations
in the second answer, and the recursive call on a list one element smaller). This
gives the following recurrence:

T (k) =

{
4 when k = 0

13 + T (k − 1) when k > 0

For a given list that is p elements long (note that p ≥ 0), this would take 13 steps
for the first element, 13 more steps for the second, 13 more for the third, and so on,
until we run out of list elements and need 4 more steps: a total of 13p + 4 steps.
Notice this is precisely the same answer we obtained by the tabular method!

Exercise

Why can we assume that for a list p elements long, p ≥ 0? And why did we
take the trouble to explicitly state this above?

With some thought, you can see that the idea of constructing a recurrence works
even when there is more than one recursive call, and when the argument to that call
is one element structurally smaller. What we haven’t seen, however, is a way to
solve such relations in general. That’s where we’re going next [section 16.10].

16.7 A Notation for Functions

We have seen above that we can describe the running time of len through a func-
tion. We don’t have an especially good notation for writing such (anonymous)
functions. Wait, we do—lam(k): (13 * k) + 4 end—but my colleagues
would be horrified if you wrote this on their exams. Therefore, we’ll introduce the
following notation to mean precisely the same thing:

[k → 13k + 4]

The brackets denote anonymous functions, with the parameters before the arrow
and the body after.

16.8 Comparing Functions

Let’s return to the running time of len. We’ve written down a function of great
precision: 13! 4! Is this justified?

At a fine-grained level already, no, it’s not. We’ve lumped many operations,
with different actual running times, into a cost of one. So perhaps we should not
worry too much about the differences between, say, [k → 13k+ 4] and [k → 4k+
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10]. If we were given two implementations with these running times, respectively,
it’s likely that we would pick other characteristics to choose between them.

What this boils down to is being able to compare two functions (representing
the performance of implementations) for whether one is somehow quantitatively
better in some meaningful sense than the other: i.e., is the quantitative difference
so great that it might lead to a qualitative one. The example above suggests that
small differences in constants probably do not matter. This suggests a definition of
this form:

∃c.∀n ∈ N, f1(n) ≤ c · f2(n)⇒ f1 ≤ f2
Obviously, the “bigger” function is likely to be a less useful bound than a

“tighter” one. That said, it is conventional to write a “minimal” bound for func-
tions, which means avoiding unnecessary constants, sum terms, and so on. The
justification for this is given below [section 16.9].

Note carefully the order of identifiers. We must be able to pick the constant c
up front for this relationship to hold.

Do Now!

Why this order and not the opposite order? What if we had swapped the two
quantifiers?

Had we swapped the order, it would mean that for every point along the number
line, there must exist a constant—and there pretty much always does! The swapped
definition would therefore be useless. What is important is that we can identify the
constant no matter how large the parameter gets. That is what makes this truly a
constant.

This definition has more flexibility than we might initially think. For instance,
consider our running example compared with [k → k2]. Clearly, the latter function
eventually dominates the former: i.e.,

[k → 13k + 4] ≤ [k → k2]

We just need to pick a sufficiently large constant and we will find this to be true.

Exercise

What is the smallest constant that will suffice?

You will find more complex definitions in the literature and they all have mer-
its, because they enable us to make finer-grained distinctions than this definition
allows. For the purpose of this book, however, the above definition suffices.

Observe that for a given function f , there are numerous functions that are less
than it. We use the notation O(·) to describe this family of functions. Thus if In computer science this is

usually pronounced “big-Oh”,
though some prefer to call it the
Bachmann-Landau notation
after its originators.
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g ≤ f , we can write g ∈ O(f), which we can read as “f is an upper-bound for g”.
Thus, for instance,

[k → 3k] ∈ O([k → 4k + 12])

[k → 4k + 12] ∈ O([k → k2])

and so on.
Pay especially close attention to our notation. We write ∈ rather than = or

some other symbol, because O(f) describes a family of functions of which g is a
member. We also write f rather than f(x) because we are comparing functions—
f—rather than their values at particular points—f(x)—which would be ordinary
numbers! Most of the notation in most the books and Web sites suffers from one
or both flaws. We know, however, that functions are values, and that functions can
be anonymous. We have actually exploited both facts to be able to write

[k → 3k] ∈ O([k → 4k + 12])

This is not the only notion of function comparison that we can have. For in-
stance, given the definition of ≤ above, we can define a natural relation <. This
then lets us ask, given a function f , what are all the functions g such that g ≤ f but
not g < f , i.e., those that are “equal” to f . This is the family of functions that areLook out! We are using quotes

because this is not the same as
ordinary function equality,
which is defined as the two
functions giving the same
answer on all inputs. Here, two
“equal” functions may not give
the same answer on any inputs.

separated by at most a constant; when the functions indicate the order of growth of
programs, “equal” functions signify programs that grow at the same speed (up to
constants). We use the notation Θ(·) to speak of this family of functions, so if g is
equivalent to f by this notion, we can write g ∈ Θ(f) (and it would then also be
true that f ∈ Θ(g)).

Exercise

Convince yourself that this notion of function equality is an equivalence rela-
tion, and hence worthy of the name “equal”. It needs to be (a) reflexive (i.e.,
every function is related to itself); (b) antisymmetric (if f ≤ g and g ≤ f
then f and g are equal); and (c) transitive (f ≤ g and g ≤ h implies f ≤ h).

16.9 Combining Big-Oh Without Woe

Now that we’ve introduced this notation, we should inquire about its closure prop-
erties: namely, how do these families of functions combine? To nudge your in-
tuitions, assume that in all cases we’re discussing the running time of functions.
We’ll consider three cases:

• Suppose we have a function f (whose running time is) in O(F ). Let’s say
we run it p times, for some given constant. The running time of the resulting
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code is then p×O(F ). However, observe that this is really no different from
O(F ): we can simply use a bigger constant for c in the definition of O(·)—
in particular, we can just use pc. Conversely, then, O(pF ) is equivalent to
O(F ). This is the heart of the intution that “multiplicative constants don’t
matter”.

• Suppose we have two functions, f in O(F ) and g in O(G). If we run f
followed by g, we would expect the running time of the combination to be
the sum of their individual running times, i.e., O(F ) + O(G). You should
convince yourself that this is simply O(F +G).

• Suppose we have two functions, f in O(F ) and g in O(G). If f invokes g
in each of its steps, we would expect the running time of the combination to
be the product of their individual running times, i.e., O(F ) × O(G). You
should convince yourself that this is simply O(F ×G).

These three operations—addition, multiplication by a constant, and multiplication
by a function—cover just about all the cases. For instance, we can use this to To ensure that the table fits in a

reasonable width, we will abuse
notation.

reinterpret the tabular operations above (assuming everything is a function of k):
|Q| #Q TotQ |A| #A TotA Total
O(1) O(k) O(k) O(1) O(1) O(1) O(k)
O(1) O(k) O(k) O(1) O(k) O(k) O(k)

Because multiplication by constants doesn’t matter, we can replace the 3 with 1.
Because addition of a constant doesn’t matter (run the addition rule in reverse),
k+ 1 can become k. Adding this gives us O(k) +O(k) = 2×O(k) ∈ O(k). This
justifies claiming that running len on a k-element list takes time in O([k → k]),
which is a much simpler way of describing its bound than O([k → 13k + 4]). In
particular, it provides us with the essential information and nothing else: as the
input (list) grows, the running time grows proportional to it, i.e., if we add one
more element to the input, we should expect to add a constant more of time to the
running time.

16.10 Solving Recurrences

There is a great deal of literature on solving recurrence equations. In this section
we won’t go into general techniques, nor will we even discuss very many different
recurrences. Rather, we’ll focus on just a handful that should be in the repertoire of
every computer scientist. You’ll see these over and over, so you should instinctively
recognize their recurrence pattern and know what complexity they describe (or
know how to quickly derive it).
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Earlier we saw a recurrence that had two cases: one for the empty input and one
for all others. In general, we should expect to find one case for each non-recursive
call and one for each recursive one, i.e., roughly one per cases clause. In what
follows, we will ignore the base cases so long as the size of the input is constant
(such as zero or one), because in such cases the amount of work done will also be
a constant, which we can generally ignore [section 16.8].

• T (k) = T (k − 1) + c
= T (k − 2) + c+ c
= T (k − 3) + c+ c+ c
= ...
= T (0) + c× k
= c0 + c× k

Thus T ∈ O([k → k]). Intuitively, we do a constant amount of work (c)
each time we throw away one element (k − 1), so we do a linear amount of
work overall.

• T (k) = T (k − 1) + k
= T (k − 2) + (k − 1) + k
= T (k − 3) + (k − 2) + (k − 1) + k
= ...
= T (0) + (k − (k − 1)) + (k − (k − 2)) + · · ·+ (k − 2) + (k − 1) + k
= c0 + 1 + 2 + · · ·+ (k − 2) + (k − 1) + k

= c0 + k·(k+1)
2

Thus T ∈ O([k → k2]). This follows from the solution to the sum of the
first k numbers.

We can also view this recurrence geometrically. Imagine each x below refers
to a unit of work, and we start with k of them. Then the first row has k units
of work:

xxxxxxxx
followed by the recurrence on k − 1 of them:

xxxxxxx
which is followed by another recurrence on one smaller, and so on, until we
fill end up with:

xxxxxxxx
xxxxxxx
xxxxxx
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xxxxx
xxxx
xxx
xx
x
The total work is then essentially the area of this triangle, whose base and
height are both k: or, if you prefer, half of this k × k square:

xxxxxxxx
xxxxxxx.
xxxxxx..
xxxxx...
xxxx....
xxx.....
xx......
x.......
Similar geometric arguments can be made for all these recurrences.

•
T (k) = T (k/2) + c

= T (k/4) + c+ c
= T (k/8) + c+ c+ c
= ...
= T (k/2log2 k) + c · log2 k
= c1 + c · log2 k

Thus T ∈ O([k → log k]). Intuitively, we’re able to do only constant work
(c) at each level, then throw away half the input. In a logarithmic number of
steps we will have exhausted the input, having done only constant work each
time. Thus the overall complexity is logarithmic.

•
T (k) = T (k/2) + k

= T (k/4) + k/2 + k
= ...
= T (1) + k/2log2 k + · · ·+ k/4 + k/2 + k
= c1 + k(1/2log2 k + · · ·+ 1/4 + 1/2 + 1)
= c1 + 2k

Thus T ∈ O([k → k]). Intuitively, the first time your process looks at all the
elements, the second time it looks at half of them, the third time a quarter,
and so on. This kind of successive halving is equivalent to scanning all the
elements in the input a second time. Hence this results in a linear process.
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• T (k) = 2T (k/2) + k
= 2(2T (k/4) + k/2) + k
= 4T (k/4) + k + k
= 4(2T (k/8) + k/4) + k + k
= 8T (k/8) + k + k + k
= ...
= 2log2 kT (1) + k · log2 k
= k · c1 + k · log2 k

Thus T ∈ O([k → k · log k]). Intuitively, each time we’re processing all the
elements in each recursive call (the k) as well as decomposing into two half
sub-problems. This decomposition gives us a recursion tree of logarithmic
height, at each of which levels we’re doing linear work.

• T (k) = 2T (k − 1) + c
= 2T (k − 1) + (2− 1)c
= 2(2T (k − 2) + c) + (2− 1)c
= 4T (k − 2) + 3c
= 4T (k − 2) + (4− 1)c
= 4(2T (k − 3) + c) + (4− 1)c
= 8T (k − 3) + 7c
= 8T (k − 3) + (8− 1)c
= ...
= 2kT (0) + (2k − 1)c

Thus T ∈ O([k → 2k]). Disposing of each element requires doing a constant
amount of work for it and then doubling the work done on the rest. This
successive doubling leads to the exponential.

Exercise

Using induction, prove each of the above derivations.



Chapter 17

Sets Appeal

Earlier [section 11.2] we introduced sets. Recall that the elements of a set have
no specific order, and ignore duplicates. At that time we relied on Pyret’s built-in If these ideas are not familiar,

please read section 11.2, since
they will be important when
discussing the representation of
sets.

representation of sets. Now we will discuss how to build sets for ourselves. In what
follows, we will focus only on sets of numbers.

We will start by discussing how to represent sets using lists. Intuitively, using
lists to represent sets of data seems problematic, because lists respect both order
and duplication. For instance,

check:
[list: 1, 2, 3] is [list: 3, 2, 1, 1]

end

fails.
In principle, we want sets to obey the following interface: Note that a type called Set is

already built into Pyret, so we
won’t use that name below.

<set-operations> ::=
mt-set :: Set
is-in :: (T, Set<T> -> Bool)
insert :: (T, Set<T> -> Set<T>)
union :: (Set<T>, Set<T> -> Set<T>)
size :: (Set<T> -> Number)
to-list :: (Set<T> -> List<T>)

We may also find it also useful to have functions such as

insert-many :: (List<T>, Set<T> -> Set<T>)
which, combined with mt-set, easily gives us a to-set function.

Sets can contain many kinds of values, but not necessarily any kind: we need
to be able to check for two values being equal (which is a requirement for a set, but
not for a list!), which can’t be done with all values [section 21.6.3]; and sometimes

185
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we might even want the elements to obey an ordering [section 17.2.1]. Numbers
satisfy both characteristics.

17.1 Representing Sets by Lists

In what follows we will see multiple different representations of sets, so we will
want names to tell them apart. We’ll use LSet to stand for “sets represented as
lists”.

As a starting point, let’s consider the implementation of sets using lists as the
underlying representation. After all, a set appears to merely be a list wherein we
ignore the order of elements.

17.1.1 Representation Choices

The empty list can stand in for the empty set—

type LSet = List
mt-set = empty
—and we can presumably define size as

fun size<T>(s :: LSet<T>) -> Number:
s.length()

end

However, thisNreduction (of sets to lists) can be dangerous:

1. There is a subtle difference between lists and sets. The list

[list: 1, 1]

is not the same as

[list: 1]

because the first list has length two whereas the second has length one.
Treated as a set, however, the two are the same: they both have size one.
Thus, our implementation of size above is incorrect if we don’t take into
account duplicates (either during insertion or while computing the size).

2. We might falsely make assumptions about the order in which elements are
retrieved from the set due to the ordering guaranteed provided by the under-
lying list representation. This might hide bugs that we don’t discover until
we change the representation.
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3. We might have chosen a set representation because we didn’t need to care
about order, and expected lots of duplicate items. A list representation might
store all the duplicates, resulting in significantly more memory use (and
slower programs) than we expected.

To avoid these perils, we have to be precise about how we’re going to use
lists to represent sets. One key question (but not the only one, as we’ll soon see
[section 17.1.3]) is what to do about duplicates. One possibility is for insert to
check whether an element is already in the set and, if so, leave the representation
unchanged; this incurs a cost during insertion but avoids unnecessary duplication
and lets us use length to implement size. The other option is to define insert
as link—literally,

insert = link
—and have some other procedure perform the filtering of duplicates.

17.1.2 Time Complexity

What is the complexity of this representation of sets? Let’s consider just insert,
check, and size. Suppose the size of the set is k (where, to avoid ambigu-
ity, we let k represent the number of distinct elements). The complexity of these
operations depends on whether or not we store duplicates:

• If we don’t store duplicates, then size is simply length, which takes
time linear in k. Similarly, check only needs to traverse the list once to
determine whether or not an element is present, which also takes time linear
in k. But insert needs to check whether an element is already present,
which takes time linear in k, followed by at most a constant-time operation
(link).

• If we do store duplicates, then insert is constant time: it simply links
on the new element without regard to whether it already is in the set rep-
resentation. check traverses the list once, but the number of elements it
needs to visit could be significantly greater than k, depending on how many
duplicates have been added. Finally, size needs to check whether or not
each element is duplicated before counting it.

Do Now!

What is the time complexity of size if the list has duplicates?

One implementation of size is
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fun size<T>(s :: LSet<T>) -> Number:
cases (List) s:

| empty => 0
| link(f, r) =>

if r.member(f):
size(r)

else:
1 + size(r)

end
end

end

Let’s now compute the complexity of the body of the function, assuming the
number of distinct elements in s is k but the actual number of elements in s is
d, where d ≥ k. To compute the time to run size on d elements, T (d), we
should determine the number of operations in each question and answer. The first
question has a constant number of operations, and the first answer also a constant.
The second question also has a constant number of operations. Its answer is a
conditional, whose first question (r.member(f) needs to traverse the entire list,
and hence has O([k → d]) operations. If it succeeds, we recur on something of
size T (d − 1); else we do the same but perform a constant more operations. Thus
T (0) is a constant, while the recurrence (in big-Oh terms) is

T (d) = d+ T (d− 1)

Thus T ∈ O([d → d2]). Note that this is quadratic in the number of elements in
the list, which may be much bigger than the size of the set.

17.1.3 Choosing Between Representations

Now that we have two representations with different complexities, it’s worth think-
ing about how to choose between them. To do so, let’s build up the following table.
The table distinguishes between the interface (the set) and the implementation (the
list), because—owing to duplicates in the representation—these two may not be
the same. In the table we’ll consider just two of the most common operations,
insertion and membership checking:

With Duplicates Without Duplicates
insert is-in insert is-in

Size of Set constant linear linear linear
Size of List constant linear linear linear
A naive reading of this would suggest that the representation with duplicates is
better because it’s sometimes constant and sometimes linear, whereas the version
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without duplicates is always linear. However, this masks a very important distinc-
tion: what the linear means. When there are no duplicates, the size of the list is
the same as the size of the set. However, with duplicates, the size of the list can be
arbitrarily larger than that of the set!

Based on this, we can draw several lessons:

1. Which representation we choose is a matter of how much duplication we
expect. If there won’t be many duplicates, then the version that stores dupli-
cates pays a small extra price in return for some faster operations.

2. Which representation we choose is also a matter of how often we expect
each operation to be performed. The representation without duplication is
“in the middle”: everything is roughly equally expensive (in the worst case).
With duplicates is “at the extremes”: very cheap insertion, potentially very
expensive membership. But if we will mostly only insert without checking
membership, and especially if we know membership checking will only oc-
cur in situations where we’re willing to wait, then permitting duplicates may
in fact be the smart choice. (When might we ever be in such a situation?
Suppose your set represents a backup data structure; then we add lots of data
but very rarely—indeed, only in case of some catastrophe—ever need to look
for things in it.)

3. Another way to cast these insights is that our form of analysis is too weak.
In situations where the complexity depends so heavily on a particular se-
quence of operations, big-Oh is too loose and we should instead study the
complexity of specific sequences of operations. We will address precisely
this question later [chapter 18].

Moreover, there is no reason a program should use only one representation.
It could well begin with one representation, then switch to another as it better
understands its workload. The only thing it would need to do to switch is to convert
all existing data between the representations.

How might this play out above? Observe that data conversion is very cheap
in one direction: since every list without duplicates is automatically also a list
with (potential) duplicates, converting in that direction is trivial (the representation
stays unchanged, only its interpretation changes). The other direction is harder: we
have to filter duplicates (which takes time quadratic in the number of elements in
the list). Thus, a program can make an initial guess about its workload and pick
a representation accordingly, but maintain statistics as it runs and, when it finds
its assumption is wrong, switch representations—and can do so as many times as
needed.
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17.1.4 Other Operations

Exercise

Implement the remaining operations catalogued above (<set-operations>)
under each list representation.

Exercise

Implement the operation

remove :: (Set<T>, T -> Set<T>)
under each list representation (renaming Set appropriately. What difference
do you see?

Do Now!

Suppose you’re asked to extend sets with these operations, as the set analog
of first and rest:

one :: (Set<T> -> T)
others :: (Set<T> -> T)
You should refuse to do so! Do you see why?

With lists the “first” element is well-defined, whereas sets are defined to have
no ordering. Indeed, just to make sure users of your sets don’t accidentally assume
anything about your implementation (e.g., if you implement one using first,
they may notice that one always returns the element most recently added to the
list), you really ought to return a random element of the set on each invocation.

Unfortunately, returning a random element means the above interface is unus-
able. Suppose s is bound to a set containing 1, 2, and 3. Say the first time one(s)
is invoked it returns 2, and the second time 1. (This already means one is not a
function.) The third time it may again return 2. Thus others has to remem-
ber which element was returned the last time one was called, and return the set
sans that element. Suppose we now invoke one on the result of calling others.
That means we might have a situation where one(s) produces the same result as
one(others(s)).

Exercise

Why is it unreasonable for one(s) to produce the same result as one(others(s))?
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Exercise

Suppose you wanted to extend sets with a subset operation that partitioned
the set according to some condition. What would its type be? See [REF join
lists] for a similar operation.

Exercise

The types we have written above are not as crisp as they could be. Define
a has-no-duplicates predicate, refine the relevant types with it, and
check that the functions really do satisfy this criterion.

17.2 Making Sets Grow on Trees

Let’s start by noting that it seems better, if at all possible, to avoid storing du-
plicates. Duplicates are only problematic during insertion due to the need for a
membership test. But if we can make membership testing cheap, then we would
be better off using it to check for duplicates and storing only one instance of each
value (which also saves us space). Thus, let’s try to improve the time complexity
of membership testing (and, hopefully, of other operations too).

It seems clear that with a (duplicate-free) list representation of a set, we cannot
really beat linear time for membership checking. This is because at each step, we
can eliminate only one element from contention which in the worst case requires
a linear amount of work to examine the whole set. Instead, we need to eliminate
many more elements with each comparison—more than just a constant.

In our handy set of recurrences [section 16.10], one stands out: T (k) = T (k/2)+
c. It says that if, with a constant amount of work we can eliminate half the input,
we can perform membership checking in logarithmic time. This will be our goal.

Before we proceed, it’s worth putting logarithmic growth in perspective. Asymp-
totically, logarithmic is obviously not as nice as constant. However, logarithmic
growth is very pleasant because it grows so slowly. For instance, if an input dou-
bles from size k to 2k, its logarithm—and hence resource usage—grows only by
log 2k − log k = log 2, which is a constant. Indeed, for just about all problems,
practically speaking the logarithm of the input size is bounded by a constant (that
isn’t even very large). Therefore, in practice, for many programs, if we can shrink
our resource consumption to logarithmic growth, it’s probably time to move on and
focus on improving some other part of the system.
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17.2.1 Converting Values to Ordered Values

We have actually just made an extremely subtle assumption. When we check one
element for membership and eliminate it, we have eliminated only one element. To
eliminate more than one element, we need one element to “speak for” several. That
is, eliminating that one value needs to have safely eliminated several others as well
without their having to be consulted. In particular, then, we can no longer compare
for mere equality, which compares one set element against another element; we
need a comparison that compares against an element against a set of elements.

To do this, we have to convert an arbitrary datum into a datatype that permits
such comparison. This is known as hashing. A hash function consumes an arbitrary
value and produces a comparable representation of it (its hash)—most commonly
(but not strictly necessarily), a number. A hash function must naturally be deter-
ministic: a fixed value should always yield the same hash (otherwise, we might
conclude that an element in the set is not actually in it, etc.). Particular uses may
need additional properties: e.g., below we assume its output is partially ordered.

Let us now consider how one can compute hashes. If the input datatype is a
number, it can serve as its own hash. Comparison simply uses numeric comparison
(e.g., <). Then, transitivity of < ensures that if an element A is less than another
element B, then A is also less than all the other elements bigger than B. The same
principle applies if the datatype is a string, using string inequality comparison. But
what if we are handed more complex datatypes?

Before we answer that, consider that in practice numbers are more efficient to
compare than strings (since comparing two numbers is very nearly constant time).
Thus, although we could use strings directly, it may be convenient to find a numeric
representation of strings. In both cases, we will convert each character of the string
into a number—e.g., by considering its ASCII encoding. Based on that, here are
two hash functions:

1. Consider a list of primes as long as the string. Raise each prime by the
corresponding number, and multiply the result. For instance, if the string is
represented by the character codes [6, 4, 5] (the first character has code
6, the second one 4, and the third 5), we get the hash

num-expt(2, 6) * num-expt(3, 4) * num-expt(5, 5)

or 16200000.

2. Simply add together all the character codes. For the above example, this
would correspond to the has

6 + 4 + 5
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or 15.

The first representation is invertible, using the Fundamental Theorem of Arith-
metic: given the resulting number, we can reconstruct the input unambiguously
(i.e., 16200000 can only map to the input above, and none other). The second
encoding is, of course, not invertible (e.g., simply permute the characters and, by
commutativity, the sum will be the same).

Now let us consider more general datatypes. The principle of hashing will be
similar. If we have a datatype with several variants, we can use a numeric tag to
represent the variants: e.g., the primes will give us invertible tags. For each field of
a record, we need an ordering of the fields (e.g., lexicographic, or “alphabetical”
order), and must hash their contents recursively; having done so, we get in effect a
string of numbers, which we have shown how to handle.

Now that we have understood how one can deterministically convert any arbi-
trary datum into a number, in what follows, we will assume that the trees repre-
senting sets are trees of numbers. However, it is worth considering what we really
need out of a hash. In section 22.2, we will not need partial ordering. Invertibil-
ity is more tricky. In what follows below, we have assumed that finding a hash
is tantamount to finding the set element itself, which is not true if multiple values
can have the same hash. In that case, the easiest thing to do is to store alongside
the hash all the values that hashed to it, and we must search through all of these
values to find our desired element. Unfortunately, this does mean that in an espe-
cially perverse situation, the desired logarithmic complexity will actually be linear
complexity after all!

In real systems, hashes of values are typically computed by the programming
language implementation. This has the virtue that they can often be made unique.
How does the system achieve this? Easy: it essentially uses the memory address
of a value as its hash. (Well, not so fast! Sometimes the memory system can and
does move values around [REF garbage collection]. In these cases computing a
hash value is more complicated.)

17.2.2 Using Binary Trees
Because logs come from trees.

Clearly, a list representation does not let us eliminate half the elements with a
constant amount of work; instead, we need a tree. Thus we define a binary tree of
(for simplicity) numbers:

data BT:
| leaf
| node(v :: Number, l :: BT, r :: BT)

end

http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic


194 CHAPTER 17. SETS APPEAL

Given this definition, let’s define the membership checker:

fun is-in-bt(e :: Number, s :: BT) -> Boolean:
cases (BT) s:

| leaf => false
| node(v, l, r) =>

if e == v:
true

else:
is-in-bt(e, l) or is-in-bt(e, r)

end
end

end

Oh, wait. If the element we’re looking for isn’t the root, what do we do? It could
be in the left child or it could be in the right; we won’t know for sure until we’ve
examined both. Thus, we can’t throw away half the elements; the only one we can
dispose of is the value at the root. Furthermore, this property holds at every level
of the tree. Thus, membership checking needs to examine the entire tree, and we
still have complexity linear in the size of the set.

How can we improve on this? The comparison needs to help us eliminate not
only the root but also one whole sub-tree. We can only do this if the comparison
“speaks for” an entire sub-tree. It can do so if all elements in one sub-tree are less
than or equal to the root value, and all elements in the other sub-tree are greater
than or equal to it. Of course, we have to be consistent about which side contains
which subset; it is conventional to put the smaller elements to the left and the bigger
ones to the right. This refines our binary tree definition to give us a binary search
tree (BST).
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Do Now!

Here is a candiate predicate for recognizing when a binary tree is in fact a
binary search tree:

fun is-a-bst-buggy(b :: BT) -> Boolean:
cases (BT) b:

| leaf => true
| node(v, l, r) =>

(is-leaf(l) or (l.v <= v)) and
(is-leaf(r) or (v <= r.v)) and
is-a-bst-buggy(l) and
is-a-bst-buggy(r)

end
end

Is this definition correct?

It’s not. To actually throw away half the tree, we need to be sure that everything
in the left sub-tree is less than the value in the root and similarly, everything in the
right sub-tree is greater than the root. But the definition above performs only a We have used <= instead of <

above because even though we
don’t want to permit duplicates
when representing sets, in other
cases we might not want to be
so stringent; this way we can
reuse the above implementation
for other purposes.

“shallow” comparison. Thus we could have a root a with a right child, b, such that
b > a; and the b node could have a left child c such that c < b; but this does not
guarantee that c > a. In fact, it is easy to construct a counter-example that passes
this check:

check:
node(5, node(3, leaf, node(6, leaf, leaf)), leaf)

satisfies is-a-bst-buggy # FALSE!
end

Exercise

Fix the BST checker.

With a corrected definition, we can now define a refined version of binary trees
that are search trees:

type BST = BT%(is-a-bst)
We can also remind ourselves that the purpose of this exercise was to define sets,
and define TSets to be tree sets:

type TSet = BST
mt-set = leaf
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Now let’s implement our operations on the BST representation. First we’ll write
a template:

fun is-in(e :: Number, s :: BST) -> Bool:
cases (BST) s:

| leaf => ...
| node(v, l :: BST, r :: BST) => ...

... is-in(l) ...

... is-in(r) ...
end

end
Observe that the data definition of a BST gives us rich information about the two
children: they are each a BST, so we know their elements obey the ordering prop-
erty. We can use this to define the actual operations:

fun is-in(e :: Number, s :: BST) -> Boolean:
cases (BST) s:

| leaf => false
| node(v, l, r) =>

if e == v:
true

else if e < v:
is-in(e, l)

else if e > v:
is-in(e, r)

end
end

end

fun insert(e :: Number, s :: BST) -> BST:
cases (BST) s:

| leaf => node(e, leaf, leaf)
| node(v, l, r) =>

if e == v:
s

else if e < v:
node(v, insert(e, l), r)

else if e > v:
node(v, l, insert(e, r))

end
end
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end
In both functions we are strictly assuming the invariant of the BST, and in the latter
case also ensuring it. Make sure you identify where, why, and how.

You should now be able to define the remaining operations. Of these, size
clearly requires linear time (since it has to count all the elements), but because
is-in and insert both throw away one of two children each time they recur,
they take logarithmic time.

Exercise

Suppose we frequently needed to compute the size of a set. We ought to be

able to reduce the time complexity of size by having each treeNcache its
size, so that size could complete in constant time (note that the size of the
tree clearly fits the criterion of a cache, since it can always be reconstructed).
Update the data definition and all affected functions to keep track of this
information correctly.

But wait a minute. Are we actually done? Our recurrence takes the form
T (k) = T (k/2) + c, but what in our data definition guaranteed that the size of the
child traversed by is-in will be half the size?

Do Now!

Construct an example—consisting of a sequence of inserts to the empty
tree—such that the resulting tree is not balanced. Show that searching for
certain elements in this tree will take linear, not logarithmic, time in its size.

Imagine starting with the empty tree and inserting the values 1, 2, 3, and 4, in
order. The resulting tree would be

check:
insert(4, insert(3, insert(2, insert(1, mt-set)))) is
node(1, leaf,

node(2, leaf,
node(3, leaf,

node(4, leaf, leaf))))
end
Searching for 4 in this tree would have to examine all the set elements in the tree.
In other words, this binary search tree is degenerate—it is effectively a list, and we
are back to having the same complexity we had earlier.

Therefore, using a binary tree, and even a BST, does not guarantee the complex-
ity we want: it does only if our inputs have arrived in just the right order. However,
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we cannot assume any input ordering; instead, we would like an implementation
that works in all cases. Thus, we must find a way to ensure that the tree is al-
ways balanced, so each recursive call in is-in really does throw away half the
elements.

17.2.3 A Fine Balance: Tree Surgery

Let’s define a balanced binary search tree (BBST). It must obviously be a search
tree, so let’s focus on the “balanced” part. We have to be careful about precisely
what this means: we can’t simply expect both sides to be of equal size because this
demands that the tree (and hence the set) have an even number of elements and,
even more stringently, to have a size that is a power of two.

Exercise

Define a predicate for a BBST that consumes a BT and returns a Boolean
indicating whether or not it a balanced search tree.

Therefore, we relax the notion of balance to one that is both accommodating
and sufficient. We use the term balance factor for a node to refer to the height of its
left child minus the height of its right child (where the height is the depth, in edges,
of the deepest node). We allow every node of a BBST to have a balance factor of
−1, 0, or 1 (but nothing else): that is, either both have the same height, or the left
or the right can be one taller. Note that this is a recursive property, but it applies
at all levels, so the imbalance cannot accumulate making the whole tree arbitrarily
imbalanced.

Exercise

Given this definition of a BBST, show that the number of nodes is exponential
in the height. Thus, always recurring on one branch will terminate after a
logarithmic (in the number of nodes) number of steps.

Here is an obvious but useful observation: every BBST is also a BST (this was
true by the very definition of a BBST). Why does this matter? It means that a
function that operates on a BST can just as well be applied to a BBST without any
loss of correctness.

So far, so easy. All that leaves is a means of creating a BBST, because it’s
responsible for ensuring balance. It’s easy to see that the constant empty-set is
a BBST value. So that leaves only insert.

Here is our situation with insert. Assuming we start with a BBST, we can
determine in logarithmic time whether the element is already in the tree and, if so,
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ignore it. When inserting an element, given balanced trees, the insert for a BST To implement a bag we count
how many of each element are
in it, which does not affect the
tree’s height.

takes only a logarithmic amount of time to perform the insertion. Thus, if perform-
ing the insertion does not affect the tree’s balance, we’re done. Therefore, we only
need to consider cases where performing the insertion throws off the balance.

Observe that because < and > are symmetric (likewise with <= and >=),
we can consider insertions into one half of the tree and a symmetric argument
handles insertions into the other half. Thus, suppose we have a tree that is currently
balanced into which we are inserting the element e. Let’s say e is going into the
left sub-tree and, by virtue of being inserted, will cause the entire tree to become
imbalanced. Some trees, like family trees

[REF], represent real-world
data. It makes no sense to
“balance” a family tree: it must
accurately model whatever
reality it represents. These
set-representing trees, in
contrast, are chosen by us, not
dictated by some external
reality, so we are free to
rearrange them.

There are two ways to proceed. One is to consider all the places where we
might insert e in a way that causes an imbalance and determine what to do in each
case.

Exercise

Enumerate all the cases where insertion might be problematic, and dictate
what to do in each case.

The number of cases is actually quite overwhelming (if you didn’t think so, you
missed a few...). Therefore, we instead attack the problem after it has occurred:
allow the existing BST insert to insert the element, assume that we have an
imbalanced tree, and show how to restore its balance. The insight that a tree can be

made “self-balancing” is quite
remarkable, and there are now
many solutions to this problem.
This particular one, one of the
oldest, is due to G.M.
Adelson-Velskii and E.M.
Landis. In honor of their initials
it is called an AVL Tree, though
the tree itself is quite evident;
their genius is in defining
re-balancing.

Thus, in what follows, we begin with a tree that is balanced; insert causes
it to become imbalanced; we have assumed that the insertion happened in the left
sub-tree. In particular, suppose a (sub-)tree has a balance factor of 2 (positive
because we’re assuming the left is imbalanced by insertion). The procedure for
restoring balance depends critically on the following property:

Exercise

Show that if a tree is currently balanced, i.e., the balance factor at every node
is −1, 0, or 1, then insert can at worst make the balance factor ±2.

The algorithm that follows is applied as insert returns from its recursion,
i.e., on the path from the inserted value back to the root. Since this path is of
logarithmic length in the set’s size (due to the balancing property), and (as we
shall see) performs only a constant amount of work at each step, it ensures that
insertion also takes only logarithmic time, thus completing our challenge.

To visualize the algorithm, let’s use this tree schematic:
p
/ \



200 CHAPTER 17. SETS APPEAL

q C
/ \

A B
Here, p is the value of the element at the root (though we will also abuse terminol-
ogy and use the value at a root to refer to that whole tree), q is the value at the root
of the left sub-tree (so q < p), and A, B, and C name the respective sub-trees. We
have assumed that e is being inserted into the left sub-tree, which means e < p.

Let’s say that C is of height k. Before insertion, the tree rooted at q must have
had height k+1 (or else one insertion cannot create imbalance). In turn, this means
A must have had height k or k − 1, and likewise for B.

Suppose that after insertion, the tree rooted at q has height k + 2. Thus, either
A or B has height k + 1 and the other must have height less than that (either k or
k − 1).

Exercise

Why can they both not have height k + 1 after insertion?

This gives us two cases to consider.

Left-Left Case

Let’s say the imbalance is in A, i.e., it has height k + 1. Let’s expand that tree:
p

/ \
q C

/ \
r B
/ \

A1 A2
We know the following about the data in the sub-trees. We’ll use the notation
T < a where T is a tree and a is a single value to mean every value in T is less
than a.

• A1 < r.

• r < A2 < q.

• q < B < p.

• p < C.
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Let’s also remind ourselves of the sizes:

• The height of A1 or of A2 is k (the cause of imbalance).

• The height of the other Ai is k − 1 (see the exercise above).

• The height of C is k (initial assumption; k is arbitrary).

• The height of B must be k − 1 or k (argued above).

Imagine this tree is a mobile, which has gotten a little skewed to the left. You
would naturally think to suspend the mobile a little further to the left to bring it
back into balance. That is effectively what we will do:

q
/ \

r p
/ \ / \
A1 A2 B C
Observe that this preserves each of the ordering properties above. In addition, the
A subtree has been brought one level closer to the root than earlier relative to B
and C. This restores the balance (as you can see if you work out the heights of
each of Ai, B, and C). Thus, we have also restored balance.

Left-Right Case

The imbalance might instead be in B. Expanding:
p
/ \
q C

/ \
A r

/ \
B1 B2

Again, let’s record what we know about data order:

• A < q.

• q < B1 < r.

• r < B2 < p.

• p < C.

and sizes:
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• Suppose the height of C is k.

• The height of A must be k − 1 or k.

• The height of B1 or B2 must be k, but not both (see the exercise above). The
other must be k − 1.

We therefore have to somehow bring B1 and B2 one level closer to the root of the
tree. By using the above data ordering knowledge, we can construct this tree:

p
/ \
r C

/ \
q B2
/ \

A B1
Of course, ifB1 is the problematic sub-tree, this still does not address the problem.
However, we are now back to the previous (left-left) case; rotating gets us to:

r
/ \
q p

/ \ / \
A B1 B2 C
Now observe that we have precisely maintained the data ordering constraints. Fur-
thermore, from the root, A’s lowest node is at height k+ 1 or k+ 2; so is B1’s; so
is B2’s; and C’s is at k + 2.

Any Other Cases?

Were we a little too glib before? In the left-right case we said that only one of B1

or B2 could be of height k (after insertion); the other had to be of height k − 1.
Actually, all we can say for sure is that the other has to be at most height k − 2.

Exercise

• Can the height of the other tree actually be k − 2 instead of k − 1?

• If so, does the solution above hold? Is there not still an imbalance of
two in the resulting tree?

• Is there actually a bug in the above algorithm?



Chapter 18

Halloween Analysis

In chapter 16, we introduced the idea of big-Oh complexity to measure the worst-
case time of a computation. As we saw in section 17.1.3, however, this is some-
times too coarse a bound when the complexity is heavily dependent on the exact
sequence of operations run. Now, we will consider a different style of complexity
analysis that better accommodates operation sequences.

18.1 A First Example

Consider, for instance, a set that starts out empty, followed by a sequence of k in-
sertions and then k membership tests, and suppose we are using the representation
without duplicates. Insertion time is proportional to the size of the set (and list);
this is initially 0, then 1, and so on, until it reaches size k. Therefore, the total cost
of the sequence of insertions is k · (k+ 1)/2. The membership tests cost k each in
the worst case, because we’ve inserted up to k distinct elements into the set. The
total time is then

k2/2 + k/2 + k2

for a total of 2k operations, yielding an average of
3

4
k +

1

4

steps per operation in the worst case.

18.2 The New Form of Analysis

What have we computed? We are still computing a worst case cost, because we
have taken the cost of each operation in the sequence in the worst case. We are then

203
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computing the average cost per operation. Therefore, this is a average of worst
cases. Note that because this is an average per operation, it does not say anythingImportantly, this is different

from what is known as
average-case analysis, which
uses probability theory to
compute the estimated cost of
the computation. We have not
used any probability here.

about how bad any one operation can be (which, as we will see [section 18.3.5],
can be quite a bit worse); it only says what their average is.

In the above case, this new analysis did not yield any big surprises. We have
found that on average we spend about k steps per operation; a big-Oh analysis
would have told us that we’re performing 2k operations with a cost of O([k → k])
each in the number of distinct elements; per operation, then, we are performing
roughly linear work in the worst-case number of set elements.

As we will soon see, however, this won’t always be the case: this new analysis
can cough up pleasant surprises.

Before we proceed, we should give this analysis its name. Formally, it is called
amortized analysis. Amortization is the process of spreading a payment out over an
extended but fixed term. In the same way, we spread out the cost of a computation
over a fixed sequence, then determine how much each payment will be.We have given it a whimsical

name because Halloween is a(n
American) holiday devoted to
ghosts, ghouls, and other
symbols of death. Amortization
comes from the Latin root
mort-, which means death,
because an amortized analysis
is one conducted “at the death”,
i.e., at the end of a fixed
sequence of operations.

18.3 An Example: Queues from Lists

We have already seen lists [chapter 8] and sets [chapter 17]. Now let’s consider
another fundamental computer science data structure: the queue. A queue is a lin-
ear, ordered data structure, just like a list; however, the set of operations they offer
is different. In a list, the traditional operations follow a last-in, first-out discipline:
.first returns the element most recently linked. In contrast, a queue follows
a first-in, first-out discipline. That is, a list can be visualized as a stack, while a
queue can be visualized as a conveyer belt.

18.3.1 List Representations

We can define queues using lists in the natural way: every enqueue is implemented
with link, while every dequeue requires traversing the whole list until its end.
Conversely, we could make enqueuing traverse to the end, and dequeuing corre-
spond to .rest. Either way, one of these operations will take constant time while
the other will be linear in the length of the list representing the queue.

In fact, however, the above paragraph contains a key insight that will let us do
better.

Observe that if we store the queue in a list with most-recently-enqueued ele-
ment first, enqueuing is cheap (constant time). In contrast, if we store the queue
in the reverse order, then dequeuing is constant time. It would be wonderful if
we could have both, but once we pick an order we must give up one or the other.

http://en.wikipedia.org/wiki/Halloween
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Unless, that is, we pick...both.
One half of this is easy. We simply enqueue elements into a list with the most

recent addition first. Now for the (first) crucial insight: when we need to dequeue,
we reverse the list. Now, dequeuing also takes constant time.

18.3.2 A First Analysis

Of course, to fully analyze the complexity of this data structure, we must also
account for the reversal. In the worst case, we might argue that any operation
might reverse (because it might be the first dequeue); therefore, the worst-case
time of any operation is the time it takes to reverse, which is linear in the length of
the list (which corresponds to the elements of the queue).

However, this answer should be unsatisfying. If we perform k enqueues fol-
lowed by k dequeues, then each of the enqueues takes one step; each of the last
k−1 dequeues takes one step; and only the first dequeue requires a reversal, which
takes steps proportional to the number of elements in the list, which at that point is
k. Thus, the total cost of operations for this sequence is k·1+k+(k−1)·1 = 3k−1
for a total of 2k operations, giving an amortized complexity of effectively constant
time per operation!

18.3.3 More Liberal Sequences of Operations

In the process of this, however, I’ve quietly glossed over something you’ve proba-
bly noticed: in our candidate sequence all dequeues followed all enqueues. What
happens on the next enqueue? Because the list is now reversed, it will have to take
a linear amount of time! So we have only partially solved the problem.

Now we can introduce the second insight: have two lists instead of one. One
of them will be the tail of the queue, where new elements get enqueued; the other
will be the head of the queue, where they get dequeued:

data Queue<T>:
| queue(tail :: List<T>, head :: List<T>)

end

mt-q :: Queue = queue(empty, empty)
Provided the tail is stored so that the most recent element is the first, then enqueuing
takes constant time:

fun enqueue<T>(q :: Queue<T>, e :: T) -> Queue<T>:
queue(link(e, q.tail), q.head)

end
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For dequeuing to take constant time, the head of the queue must be stored in
the reverse direction. However, how does any element ever get from the tail to the
head? Easy: when we try to dequeue and find no elements in the head, we reverse
the (entire) tail into the head (resulting in an empty tail). We will first define a
datatype to represent the response from dequeuing:

data Response<T>:
| elt-and-q(e :: T, r :: Queue<T>)

end

Now for the implementation of dequeue:

fun dequeue<T>(q :: Queue<T>) -> Response<T>:
cases (List) q.head:

| empty =>
new-head = q.tail.reverse()
elt-and-q(new-head.first,

queue(empty, new-head.rest))
| link(f, r) =>

elt-and-q(f,
queue(q.tail, r))

end
end

18.3.4 A Second Analysis

We can now reason about sequences of operations as we did before, by adding up
costs and averaging. However, another way to think of it is this. Let’s give each
element in the queue three “credits”. Each credit can be used for one constant-time
operation.

One credit gets used up in enqueuing. So long as the element stays in the tail
list, it still has two credits to spare. When it needs to be moved to the head list, it
spends one more credit in the link step of reversal. Finally, the dequeuing operation
performs one operation too.

Because the element does not run out of credits, we know it must have had
enough. These credits reflect the cost of operations on that element. From this
(very informal) analysis, we can conclude that in the worst case, any permutation
of enqueues and dequeues will still cost only a constant amount of amortized time.
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18.3.5 Amortization Versus Individual Operations

Note, however, that the constant represents an average across the sequence of op-
erations. It does not put a bound on the cost of any one operation. Indeed, as we
have seen above, when dequeue finds the head list empty it reverses the tail, which
takes time linear in the size of the tail—not constant at all! Therefore, we should be
careful to not assume that every step in the sequence will is bounded. Nevertheless,
an amortized analysis sometimes gives us a much more nuanced understanding of
the real behavior of a data structure than a worst-case analysis does on its own.

18.4 Reading More

At this point we have only briefly touched on the subject of amortized analysis. A
very nice tutorial by Rebecca Fiebrink provides much more information. The au-
thoritative book on algorithms, Introduction to Algorithms by Cormen, Leiserson,
Rivest, and Stein, covers amortized analysis in extensive detail.

http://www.cs.princeton.edu/~fiebrink/423/AmortizedAnalysisExplained_Fiebrink.pdf


208 CHAPTER 18. HALLOWEEN ANALYSIS



Chapter 19

Sharing and Equality

19.1 Re-Examining Equality

Consider the following data definition and example values:

data BinTree:
| leaf
| node(v, l :: BinTree, r :: BinTree)

end

a-tree =
node(5,

node(4, leaf, leaf),
node(4, leaf, leaf))

b-tree =
block:

four-node = node(4, leaf, leaf)
node(5,

four-node,
four-node)

end
In particular, it might seem that the way we’ve written b-tree is morally equiv-
alent to how we’ve written a-tree, but we’ve created a helpful binding to avoid
code duplication.

Because both a-tree and b-tree are bound to trees with 5 at the root and
a left and right child each containing 4, we can indeed reasonably consider these
trees equivalent. Sure enough:

209
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<equal-tests> ::=
check:

a-tree is b-tree
a-tree.l is a-tree.l
a-tree.l is a-tree.r
b-tree.l is b-tree.r

end
However, there is another sense in which these trees are not equivalent. con-

cretely, a-tree constructs a distinct node for each child, while b-tree uses the
same node for both children. Surely this difference should show up somehow, but
we have not yet seen a way to write a program that will tell these apart.

By default, the is operator uses the same equality test as Pyret’s ==. There
are, however, other equality tests in Pyret. In particular, the way we can tell apart
these data is by using Pyret’s identical function, which implements reference
equality. This checks not only whether two values are structurally equivalent but
whether they are the result of the very same act of value construction. With this,
we can now write additional tests:

check:
identical(a-tree, b-tree) is false
identical(a-tree.l, a-tree.l) is true
identical(a-tree.l, a-tree.r) is false
identical(b-tree.l, b-tree.r) is true

end

There is actually another way to write these tests in Pyret: the is operator can
also be parameterized by a different equality predicate than the default ==. Thus,
the above block can equivalently be written as:We can use is-not to check

for expected failure of equality.
check:

a-tree is-not%(identical) b-tree
a-tree.l is%(identical) a-tree.l
a-tree.l is-not%(identical) a-tree.r
b-tree.l is%(identical) b-tree.r

end

We will use this style of equality testing from now on.
Observe how these are the same values that were compared earlier (<equal-

tests>), but the results are now different: some values that were true earlier are
now false. In particular,

check:
a-tree is b-tree
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a-tree is-not%(identical) b-tree
a-tree.l is a-tree.r
a-tree.l is-not%(identical) a-tree.r

end

Later we will return both to what identical really means [section 21.2.2] and
to the full range of Pyret’s equality operations [section 21.6].

19.2 The Cost of Evaluating References

From a complexity viewpoint, it’s important for us to understand how these refer-
ences work. As we have hinted, four-node is computed only once, and each use
of it refers to the same value: if, instead, it was evaluated each time we referred to
four-node, there would be no real difference between a-tree and b-tree,
and the above tests would not distinguish between them.

This is especially relevant when understanding the cost of function evaluation.
We’ll construct two simple examples that illustrate this. We’ll begin with a con-
trived data structure:

L = range(0, 100)
Suppose we now define

L1 = link(1, L)
L2 = link(-1, L)
Constructing a list clearly takes time at least proportional to the length; therefore,
we expect the time to compute L to be considerably more than that for a single
link operation. Therefore, the question is how long it takes to compute L1 and
L2 after L has been computed: constant time, or time proportional to the length of
L?

The answer, for Pyret, and for most other contemporary languages (including
Java, C#, OCaml, Racket, etc.), is that these additional computations take constant
time. That is, the value bound to L is computed once and bound to L; subsequent
expressions refer to this value (hence “reference”) rather than reconstructing it, as
reference equality shows:

check:
L1.rest is%(identical) L
L2.rest is%(identical) L
L1.rest is%(identical) L2.rest

end
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Similarly, we can define a function, pass L to it, and see whether the resulting
argument is identical to the original:

fun check-for-no-copy(another-l):
identical(another-l, L)

end

check:
check-for-no-copy(L) is true

end

or, equivalently,

check:
L satisfies check-for-no-copy

end

Therefore, neither built-in operations (like .rest) nor user-defined ones (like
check-for-no-copy) make copies of their arguments. The important thingStrictly speaking, of course, we

cannot conclude that no copy
was made. Pyret could have
made a copy, discarded it, and
still passed a reference to the
original. Given how perverse
this would be, we can
assume—and take the
language’s creators’ word for
it—that this doesn’t actually
happen. By creating extremely
large lists, we can also use
timing information to observe
that the time of constructing the
list grows proportional to the
length of the list while the time
of passing it as a parameter
remains constant.

to observe here is that, instead of simply relying on authority, we have used opera-
tions in the language itself to understand how the language behaves.

19.3 On the Internet, Nobody Knows You’re a DAG

Despite the name we’ve given it, b-tree is not actually a tree. In a tree, by
definition, there are no shared nodes, whereas in b-tree the node named by
four-node is shared by two parts of the tree. Despite this, traversing b-tree
will still terminate, because there are no cyclic references in it: if you start from
any node and visit its “children”, you cannot end up back at that node. There is a
special name for a value with such a shape: directed acyclic graph (DAG).

Many important data structures are actually a DAG underneath. For instance,
consider Web sites. It is common to think of a site as a tree of pages: the top-level
refers to several sections, each of which refers to sub-sections, and so on. However,
sometimes an entry needs to be cataloged under multiple sections. For instance, an
academic department might organize pages by people, teaching, and research. In
the first of these pages it lists the people who work there; in the second, the list of
courses; and in the third, the list of research groups. In turn, the courses might have
references to the people teaching them, and the research groups are populated by
these same people. Since we want only one page per person (for both maintenance
and search indexing purposes), all these personnel links refer back to the same page
for people.
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Let’s construct a simple form of this. First a datatype to represent a site’s
content:

data Content:
| page(s :: String)
| section(title :: String, sub :: List<Content>)

end

Let’s now define a few people:

people-pages :: Content =
section("People",

[list: page("Church"),
page("Dijkstra"),
page("Haberman") ])

and a way to extract a particular person’s page:

fun get-person(n): index(people-pages.sub, n) end

Now we can define theory and systems sections:

theory-pages :: Content =
section("Theory",

[list: get-person(0), get-person(1)])
systems-pages :: Content =
section("Systems",

[list: get-person(1), get-person(2)])
which are integrated into a site as a whole:

site :: Content =
section("Computing Sciences",

[list: theory-pages, systems-pages])
Now we can confirm that each of these luminaries needs to keep only one Web
page current; for instance:

check:
theory = index(site.sub, 0)
systems = index(site.sub, 1)
theory-dijkstra = index(theory.sub, 1)
systems-dijkstra = index(systems.sub, 0)
theory-dijkstra is systems-dijkstra
theory-dijkstra is%(identical) systems-dijkstra

end
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19.4 From Acyclicity to Cycles

Here’s another example that arises on the Web. Suppose we are constructing a table
of output in a Web page. We would like the rows of the table to alternate between
white and grey. If the table had only two rows, we could map the row-generating
function over a list of these two colors. Since we do not know how many rows it
will have, however, we would like the list to be as long as necessary. In effect, we
would like to write:

web-colors = link("white", link("grey", web-colors))
to obtain an indefinitely long list, so that we could eventually write

map2(color-table-row, table-row-content, web-colors)
which applies a color-table-row function to two arguments: the current row
from table-row-content, and the current color from web-colors, pro-
ceeding in lockstep over the two lists.

Unfortunately, there are many things wrong with this attempted definition.

Do Now!

Do you see what they are?

Here are some problems in turn:

• This will not even parse. The identifier web-colors is not bound on the
right of the =.

• Earlier, we saw a solution to such a problem: use rec [section 15.3]. What
happens if we write

rec web-colors = link("white", link("grey", web-colors))

instead?

Exercise

Why does rec work in the definition of ones but not above?

• Assuming we have fixed the above problem, one of two things will happen.
It depends on what the initial value of web-colors is. Because it is a
dummy value, we do not get an arbitrarily long list of colors but rather a list
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of two colors followed by the dummy value. Indeed, this program will not
even type-check.

Suppose, however, that web-colors were written instead as a function
definition to delay its creation:

fun web-colors(): link("white", link("grey", web-colors())) end

On its own this just defines a function. If, however, we use it—web-colors()—
it goes into an infinite loop constructing links.

• Even if all that were to work, map2 would either (a) not terminate because
its second argument is indefinitely long, or (b) report an error because the
two arguments aren’t the same length.

All these problems are symptoms of a bigger issue. What we are trying to do here
is not merely create a shared datum (like a DAG) but something much richer: a
cyclic datum, i.e., one that refers back to itself:

When you get to cycles, even defining the datum becomes difficult because its
definition depends on itself so it (seemingly) needs to already be defined in the
process of being defined. We will return to cyclic data later: section 21.3.
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Chapter 20

Graphs

In section 19.4 we introduced a special kind of sharing: when the data become
cyclic, i.e., there exist values such that traversing other reachable values from them
eventually gets you back to the value at which you began. Data that have this
characteristic are called graphs. Technically, a cycle is not

necessary to be a graph; a tree
or a DAG is also regarded as a
(degenerate) graph. In this
section, however, we are
interested in graphs that have
the potential for cycles.

Lots of very important data are graphs. For instance, the people and connec-
tions in social media form a graph: the people are nodes or vertices and the con-
nections (such as friendships) are links or edges. They form a graph because for
many people, if you follow their friends and then the friends of their friends, you
will eventually get back to the person you started with. (Most simply, this happens
when two people are each others’ friends.) The Web, similarly is a graph: the
nodes are pages and the edges are links between pages. The Internet is a graph: the
nodes are machines and the edges are links between machines. A transportation
network is a graph: e.g., cities are nodes and the edges are transportation links be-
tween them. And so on. Therefore, it is essential to understand graphs to represent
and process a great deal of interesting real-world data.

Graphs are important and interesting for not only practical but also principled
reasons. The property that a traversal can end up where it began means that tra-
ditional methods of processing will no longer work: if it blindly processes every
node it visits, it could end up in an infinite loop. Therefore, we need better struc-
tural recipes for our programs. In addition, graphs have a very rich structure, which
lends itself to several interesting computations over them. We will study both these
aspects of graphs below.

217
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20.1 Understanding Graphs

Consider again the binary trees we saw earlier [section 19.1]. Let’s now try to
distort the definition of a “tree” by creating ones with cycles, i.e., trees with nodes
that point back to themselves (in the sense of identical). As we saw earlier
[section 19.4], it is not completely straightforward to create such a structure, but
what we saw earlier [section 15.3] can help us here, by letting us suspend the
evaluation of the cyclic link. That is, we have to not only use rec, we must also
use a function to delay evaluation. In turn, we have to update the annotations on
the fields. Since these are not going to be “trees” any more, we’ll use a name that
is suggestive but not outright incorrect:

data BinT:
| leaf
| node(v, l :: ( -> BinT), r :: ( -> BinT))

end
Now let’s try to construct some cyclic values. Here are a few examples:

rec tr = node("rec", lam(): tr end, lam(): tr end)
t0 = node(0, lam(): leaf end, lam(): leaf end)
t1 = node(1, lam(): t0 end, lam(): t0 end)
t2 = node(2, lam(): t1 end, lam(): t1 end)
Now let’s try to compute the size of a BinT. Here’s the obvious program:

fun sizeinf(t :: BinT) -> Number:
cases (BinT) t:

| leaf => 0
| node(v, l, r) =>

ls = sizeinf(l())
rs = sizeinf(r())
1 + ls + rs

end
end
(We’ll see why we call it sizeinf in a moment.)

Do Now!

What happens when we call sizeinf(tr)?

It goes into an infinite loop: hence the inf in its name.
There are two very different meanings for “size”. One is, “How many times can

we traverse an edge?” The other is, “How many distinct nodes were constructed as
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part of the data structure?” With trees, by definition, these two are the same. With a
DAG the former exceeds the latter but only by a finite amount. With a general graph,
the former can exceed the latter by an infinite amount. In the case of a datum like
tr, we can in fact traverse edges an infinite number of times. But the total number
of constructed nodes is only one! Let’s write this as test cases in terms of a size
function, to be defined:

check:
size(tr) is 1
size(t0) is 1
size(t1) is 2
size(t2) is 3

end

It’s clear that we need to somehow remember what nodes we have visited pre-
viously: that is, we need a computation with “memory”. In principle this is easy:
we just create an extra data structure that checks whether a node has already been
counted. As long as we update this data structure correctly, we should be all set.
Here’s an implementation.

fun sizect(t :: BinT) -> Number:
fun szacc(shadow t :: BinT, seen :: List<BinT>) -> Number:

if has-id(seen, t):
0

else:
cases (BinT) t:

| leaf => 0
| node(v, l, r) =>

ns = link(t, seen)
ls = szacc(l(), ns)
rs = szacc(r(), ns)
1 + ls + rs

end
end

end
szacc(t, empty)

end

The extra parameter, seen, is called an accumulator, because it “accumulates”
the list of seen nodes. The support function it needs checks whether a given node Note that this could just as well

be a set; it doesn’t have to be a
list.

has already been seen:

fun has-id<A>(seen :: List<A>, t :: A):
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cases (List) seen:
| empty => false
| link(f, r) =>

if f <=> t: true
else: has-id(r, t)
end

end
end

How does this do? Well, sizect(tr) is indeed 1, but sizect(t1) is 3
and sizect(t2) is 7!

Do Now!

Explain why these answers came out as they did.

The fundamental problem is that we’re not doing a very good job of remem-
bering! Look at this pair of lines:

ls = szacc(l(), ns)
rs = szacc(r(), ns)
The nodes seen while traversing the left branch are effectively forgotten, because
the only nodes we remember when traversing the right branch are those in ns:
namely, the current node and those visited “higher up”. As a result, any nodes that
“cross sides” are counted twice.

The remedy for this, therefore, is to remember every node we visit. Then, when
we have no more nodes to process, instead of returning only the size, we should
return all the nodes visited until now. This ensures that nodes that have multiple
paths to them are visited on only one path, not more than once. The logic for this
is to return two values from each traversal—the size and all the visited nodes—and
not just one.

fun size(t :: BinT) -> Number:
fun szacc(shadow t :: BinT, seen :: List<BinT>)
-> {n :: Number, s :: List<BinT>}:
if has-id(seen, t):
{n: 0, s: seen}

else:
cases (BinT) t:

| leaf => {n: 0, s: seen}
| node(v, l, r) =>

ns = link(t, seen)
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ls = szacc(l(), ns)
rs = szacc(r(), ls.s)
{n: 1 + ls.n + rs.n, s: rs.s}

end
end

end
szacc(t, empty).n

end

Sure enough, this function satisfies the above tests.

20.2 Representations

The representation we’ve seen above for graphs is certainly a start towards creating
cyclic data, but it’s not very elegant. It’s both error-prone and inelegant to have to
write lam everywhere, and remember to apply functions to () to obtain the actual
values. Therefore, here we explore other representations of graphs that are more
conventional and also much simpler to manipulate.

There are numerous ways to represent graphs, and the choice of representation
depends on several factors:

1. The structure of the graph, and in particular, its density. We will discuss this
further later [section 20.3].

2. The representation in which the data are provided by external sources. Some-
times it may be easier to simply adapt to their representation; in particular,
in some cases there may not even be a choice.

3. The features provided by the programming language, which make some rep-
resentations much harder to use than others.

Previously [chapter 17], we have explored the idea of having many different rep-
resentations for one datatype. As we will see, this is very true of graphs as well.
Therefore, it would be best if we could arrive at a common interface to process
graphs, so that all later programs can be written in terms of this interface, without
overly depending on the underlying representation.

In terms of representations, there are three main things we need:

1. A way to construct graphs.

2. A way to identify (i.e., tell apart) nodes or vertices in a graph.
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3. Given a way to identify nodes, a way to get that node’s neighbors in the
graph.

Any interface that satisfies these properties will suffice. For simplicity, we will
focus on the second and third of these and not abstract over the process of con-
structing a graph.

Our running example will be a graph whose nodes are cities in the United States
and edges are direct flight connections between them:

20.2.1 Links by Name

Here’s our first representation. We will assume that every node has a unique name
(such a name, when used to look up information in a repository of data, is some-
times called a key). A node is then a key, some information about that node, and a
list of keys that refer to other nodes:

type Key = String

data KeyedNode:
| keyed-node(key :: Key, content, adj :: List<String>)

end

type KNGraph = List<KeyedNode>
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type Node = KeyedNode
type Graph = KNGraph
(Here we’re assuming our keys are strings.)

Here’s a concrete instance of such a graph: The prefix kn- stands for
“keyed node”.

kn-cities :: Graph = block:
knWAS = keyed-node("was", "Washington", [list: "chi", "den", "saf", "hou", "pvd"])
knORD = keyed-node("chi", "Chicago", [list: "was", "saf", "pvd"])
knBLM = keyed-node("bmg", "Bloomington", [list: ])
knHOU = keyed-node("hou", "Houston", [list: "was", "saf"])
knDEN = keyed-node("den", "Denver", [list: "was", "saf"])
knSFO = keyed-node("saf", "San Francisco", [list: "was", "den", "chi", "hou"])
knPVD = keyed-node("pvd", "Providence", [list: "was", "chi"])
[list: knWAS, knORD, knBLM, knHOU, knDEN, knSFO, knPVD]

end

Given a key, here’s how we look up its neighbor:

fun find-kn(key :: Key, graph :: Graph) -> Node:
matches = for filter(n from graph):

n.key == key
end
matches.first # there had better be exactly one!

end

Exercise

Convert the comment in the function into an invariant about the datum. Ex-
press this invariant as a refinement and add it to the declaration of graphs.

With this support, we can look up neighbors easily:

fun kn-neighbors(city :: Key, graph :: Graph) -> List<Key>:
city-node = find-kn(city, graph)
city-node.adj

end

When it comes to testing, some tests are easy to write. Others, however, might
require describing entire nodes, which can be unwieldy, so for the purpose of
checking our implementation it suffices to examine just a part of the result:

check:
ns = kn-neighbors("hou", kn-cities)
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ns is [list: "was", "saf"]

map(_.content, map(find-kn(_, kn-cities), ns)) is
[list: "Washington", "San Francisco"]

end

20.2.2 Links by Indices

In some languages, it is common to use numbers as names. This is especially use-
ful when numbers can be used to get access to an element in a constant amount
of time (in return for having a bound on the number of elements that can be ac-
cessed). Here, we use a list—which does not provide constant-time access to ar-
bitrary elements—to illustrate this concept. Most of this will look very similar to
what we had before; we’ll comment on a key difference at the end.

First, the datatype:The prefix ix- stands for
“indexed”.

data IndexedNode:
| idxed-node(content, adj :: List<Number>)

end

type IXGraph = List<IndexedNode>

type Node = IndexedNode
type Graph = IXGraph
Our graph now looks like this:

ix-cities :: Graph = block:
inWAS = idxed-node("Washington", [list: 1, 4, 5, 3, 6])
inORD = idxed-node("Chicago", [list: 0, 5, 6])
inBLM = idxed-node("Bloomington", [list: ])
inHOU = idxed-node("Houston", [list: 0, 5])
inDEN = idxed-node("Denver", [list: 0, 5])
inSFO = idxed-node("San Francisco", [list: 0, 4, 3])
inPVD = idxed-node("Providence", [list: 0, 1])
[list: inWAS, inORD, inBLM, inHOU, inDEN, inSFO, inPVD]

end

where we’re assuming indices begin at 0. To find a node:

fun find-ix(idx :: Key, graph :: Graph) -> Node:
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lists.get(graph, idx)
end

We can then find neighbors almost as before:

fun ix-neighbors(city :: Key, graph :: Graph) -> List<Key>:
city-node = find-ix(city, graph)
city-node.adj

end

Finally, our tests also look similar:

check:
ns = ix-neighbors(3, ix-cities)

ns is [list: 0, 5]

map(_.content, map(find-ix(_, ix-cities), ns)) is
[list: "Washington", "San Francisco"]

end

Something deeper is going on here. The keyed nodes have intrinsic keys: the
key is part of the datum itself. Thus, given just a node, we can determine its key. In
contrast, the indexed nodes represent extrinsic keys: the keys are determined out-
side the datum, and in particular by the position in some other data structure. Given
a node and not the entire graph, we cannot know for what its key is. Even given
the entire graph, we can only determine its key by using identical, which is a
rather unsatisfactory approach to recovering fundamental information. This high-
lights a weakness of using extrinsically keyed representations of information. (In
return, extrinsically keyed representations are easier to reassemble into new col-
lections of data, because there is no danger of keys clashing: there are no intrinsic
keys to clash.)

20.2.3 A List of Edges

The representations we have seen until now have given priority to nodes, making
edges simply a part of the information in a node. We could, instead, use a represen-
tation that makes edges primary, and nodes simply be the entities that lie at their
ends: The prefix le- stands for “list

of edges”.
data Edge:

| edge(src :: String, dst :: String)
end
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type LEGraph = List<Edge>

type Graph = LEGraph
Then, our flight network becomes:

le-cities :: Graph =
[list:

edge("Washington", "Chicago"),
edge("Washington", "Denver"),
edge("Washington", "San Francisco"),
edge("Washington", "Houston"),
edge("Washington", "Providence"),
edge("Chicago", "Washington"),
edge("Chicago", "San Francisco"),
edge("Chicago", "Providence"),
edge("Houston", "Washington"),
edge("Houston", "San Francisco"),
edge("Denver", "Washington"),
edge("Denver", "San Francisco"),
edge("San Francisco", "Washington"),
edge("San Francisco", "Denver"),
edge("San Francisco", "Houston"),
edge("Providence", "Washington"),
edge("Providence", "Chicago") ]

Observe that in this representation, nodes that are not connected to other nodes in
the graph simply never show up! You’d therefore need an auxilliary data structure
to keep track of all the nodes.

To obtain the set of neighbors:

fun le-neighbors(city :: Key, graph :: Graph) -> List<Key>:
neighboring-edges = for filter(e from graph):

city == e.src
end
names = for map(e from neighboring-edges): e.dst end
names

end

And to be sure:

check:
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le-neighbors("Houston", le-cities) is
[list: "Washington", "San Francisco"]

end

However, this representation makes it difficult to store complex information about
a node without replicating it. Because nodes usually have rich information while
the information about edges tends to be weaker, we often prefer node-centric rep-
resentations. Of course, an alternative is to think of the node names as keys into
some other data structure from which we can retrieve rich information about nodes.

20.2.4 Abstracting Representations

We would like a general representation that lets us abstract over the specific imple-
mentations. We will assume that broadly we have available a notion of Node that
has content, a notion of Keys (whether or not intrinsic), and a way to obtain
the neighbors—a list of keys—given a key and a graph. This is sufficient for what
follows. However, we still need to choose concrete keys to write examples and
tests. For simplicity, we’ll use string keys [section 20.2.1].

20.3 Measuring Complexity for Graphs

Before we begin to define algorithms over graphs, we should consider how to mea-
sure the size of a graph. A graph has two components: its nodes and its edges.
Some algorithms are going to focus on nodes (e.g., visiting each of them), while
others will focus on edges, and some will care about both. So which do we use as
the basis for counting operations: nodes or edges?

It would help if we can reduce these two measures to one. To see whether that’s
possible, suppose a graph has k nodes. Then its number of edges has a wide range,
with these two extremes:

• No two nodes are connected. Then there are no edges at all.

• Every two nodes is connected. Then there are essentially as many edges as
the number of pairs of nodes.

The number of nodes can thus be significantly less or even significantly more than
the number of edges. Were this difference a matter of constants, we could have
ignored it; but it’s not. As a graph tends towards the former extreme, the ratio of
nodes to edges approaches k (or even exceeds it, in the odd case where there are
no edges, but this graph is not very interesting); as it tends towards the latter, it
is the ratio of edges to nodes that approaches k2. In other words, neither measure
subsumes the other by a constant independent of the graph.
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Therefore, when we want to speak of the complexity of algorithms over graphs,
we have to consider the sizes of both the number of nodes and edges. In a connected
graph, however, there must be at least as many edges as nodes, which means theA graph is connected if, from

every node, we can traverse
edges to get to every other node.

number of edges dominates the number of nodes. Since we are usually processing
connected graphs, or connected parts of graphs one at a time, we can bound the
number of nodes by the number of edges.

20.4 Reachability

Many uses of graphs need to address reachability: whether we can, using edges
in the graph, get from one node to another. For instance, a social network might
suggest as contacts all those who are reachable from existing contacts. On the
Internet, traffic engineers care about whether packets can get from one machine to
another. On the Web, we care about whether all public pages on a site are reachable
from the home page. We will study how to compute reachability using our travel
graph as a running example.

20.4.1 Simple Recursion

At its simplest, reachability is easy. We want to know whether there exists a pathA path is a sequence of zero or
more linked edges. between a pair of nodes, a source and a destination. (A more sophisticated version

of reachability might compute the actual path, but we’ll ignore this for now.) There
are two possibilities: the source and destintion nodes are the same, or they’re not.

• If they are the same, then clearly reachability is trivially satisfied.

• If they are not, we have to iterate through the neighbors of the source node
and ask whether the destination is reachable from each of those neighbors.

This translates into the following function:
<graph-reach-1-main> ::=

fun reach-1(src :: Key, dst :: Key, g :: Graph) -> Boolean:
if src == dst:

true
else:
<graph-reach-1-loop>
loop(neighbors(src, g))

end
end

where the loop through the neighbors of src is:
<graph-reach-1-loop> ::=
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fun loop(ns):
cases (List) ns:

| empty => false
| link(f, r) =>

if reach-1(f, dst, g): true else: loop(r) end
end

end
We can test this as follows:
<graph-reach-tests> ::=

check:
reach = reach-1
reach("was", "was", kn-cities) is true
reach("was", "chi", kn-cities) is true
reach("was", "bmg", kn-cities) is false
reach("was", "hou", kn-cities) is true
reach("was", "den", kn-cities) is true
reach("was", "saf", kn-cities) is true

end
Unfortunately, we don’t find out about how these tests fare, because some of them
don’t complete at all. That’s because we have an infinite loop, due to the cyclic
nature of graphs!

Exercise

Which of the above examples leads to a cycle? Why?

20.4.2 Cleaning up the Loop

Before we continue, let’s try to improve the expression of the loop. While the
nested function above is a perfectly reasonable definition, we can use Pyret’s for
to improve its readability.

The essence of the above loop is to iterate over a list of boolean values; if one
of them is true, the entire loop evaluates to true; if they are all false, then we haven’t
found a path to the destination node, so the loop evaluates to false. Thus:

fun ormap(fun-body, l):
cases (List) l:
| empty => false
| link(f, r) =>
if fun-body(f): true else: ormap(fun-body, r) end

end
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end

With this, we can replace the loop definition and use with:

for ormap(n from neighbors(src, g)):
reach-1(n, dst, g)

end

20.4.3 Traversal with Memory

Because we have cyclic data, we have to remember what nodes we’ve already
visited and avoid traversing them again. Then, every time we begin traversing a
new node, we add it to the set of nodes we’ve already started to visit so that. If
we return to that node, because we can assume the graph has not changed in the
meanwhile, we know that additional traversals from that node won’t make any
difference to the outcome.This property is known as

Nidempotence. We therefore define a second attempt at reachability that take an extra argu-
ment: the set of nodes we have begun visiting (where the set is represented as a
graph). The key difference from <graph-reach-1-main> is, before we begin to
traverse edges, we should check whether we’ve begun processing the node or not.
This results in the following definition:
<graph-reach-2> ::=

fun reach-2(src :: Key, dst :: Key, g :: Graph, visited :: List<Key>) -> Boolean:
if visited.member(src):

false
else if src == dst:

true
else:

new-visited = link(src, visited)
for ormap(n from neighbors(src, g)):

reach-2(n, dst, g, new-visited)
end

end
end

In particular, note the extra new conditional: if the reachability check has already
visited this node before, there is no point traversing further from here, so it re-
turns false. (There may still be other parts of the graph to explore, which other
recursive calls will do.)
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Exercise

Does it matter if the first two conditions were swapped, i.e., the beginning of
reach-2 began with

if src == dst:
true

else if visited.member(src):
false

? Explain concretely with examples.

Exercise

We repeatedly talk about remembering the nodes that we have begun to visit,
not the ones we’ve finished visiting. Does this distinction matter? How?

20.4.4 A Better Interface

As the process of testing reach-2 shows, we may have a better implementation,
but we’ve changed the function’s interface; now it has a needless extra argument,
which is not only a nuisance but might also result in errors if we accidentally mis-
use it. Therefore, we should clean up our definition by moving the core code to an
internal function:

fun reach-3(s :: Key, d :: Key, g :: Graph) -> Boolean:
fun reacher(src :: Key, dst :: Key, visited :: List<Key>) -> Boolean:

if visited.member(src):
false

else if src == dst:
true

else:
new-visited = link(src, visited)
for ormap(n from neighbors(src, g)):

reacher(n, dst, new-visited)
end

end
end
reacher(s, d, empty)

end
We have now restored the original interface while correctly implementing reacha-
bility.
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Exercise

Does this really gives us a correct implementation? In particular, does this
address the problem that the size function above addressed? Create a test
case that demonstrates the problem, and then fix it.

20.5 Depth- and Breadth-First Traversals
It is conventional for computer
science texts to call these depth-
and breadth-first search.
However, searching is just a
specific purpose; traversal is a
general task that can be used for
many purposes.

The reachability algorithm we have seen above has a special property. At every
node it visits, there is usually a set of adjacent nodes at which it can continue the
traversal. It has at least two choices: it can either visit each immediate neighbor
first, then visit all of the neighbors’ neighbors; or it can choose a neighbor, recur,
and visit the next immediate neighbor only after that visit is done. The former is
known as breadth-first traversal, while the latter is depth-first traversal.

The algorithm we have designed uses a depth-first strategy: inside <graph-
reach-1-loop>, we recur on the first element of the list of neighbors before we visit
the second neighbor, and so on. The alternative would be to have a data structure
into which we insert all the neighbors, then pull out an element at a time such that
we first visit all the neighbors before their neighbors, and so on. This naturally
corresponds to a queue [section 18.3].

Exercise

Using a queue, implement breadth-first traversal.

If we correctly check to ensure we don’t re-visit nodes, then both breadth- and
depth-first traversal will properly visit the entire reachable graph without repetition
(and hence not get into an infinite loop). Each one traverses from a node only once,
from which it considers every single edge. Thus, if a graph has N nodes and E
edges, then a lower-bound on the complexity of traversal is O([N,E → N + E]).
We must also consider the cost of checking whether we have already visited a
node before (which is a set membership problem, which we address elsewhere:
section 17.2). Finally, we have to consider the cost of maintaining the data structure
that keeps track of our traversal. In the case of depth-first traversal, recursion—
which uses the machine’s stack—does it automatically at constant overhead. In the
case of breadth-first traversal, the program must manage the queue, which can add
more than constant overhead.In practice, too, the stack will

usually perform much better
than a queue, because it is
supported by machine
hardware.

This would suggest that depth-first traversal is always better than breadth-first
traversal. However, breadth-first traversal has one very important and valuable
property. Starting from a node N , when it visits a node P , count the number of
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edges taken to get to P . Breadth-first traversal guarantees that there cannot have
been a shorter path to P : that is, it finds a shortest path to P .

Exercise

Why “a” rather than “the” shortest path?

Do Now!

Prove that breadth-first traversal finds a shortest path.

20.6 Graphs With Weighted Edges

Consider a transportation graph: we are usually interested not only in whether
we can get from one place to another, but also in what it “costs” (where we may
have many different cost measures: money, distance, time, units of carbon dioxide,

etc.). On the Internet, we might care about theNlatency orNbandwidth over
a link. Even in a social network, we might like to describe the degree of closeness
of a friend. In short, in many graphs we are interested not only in the direction of
an edge but also in some abstract numeric measure, which we call its weight.

In the rest of this study, we will assume that our graph edges have weights.
This does not invalidate what we’ve studied so far: if a node is reachable in an
unweighted graph, it remains reachable in a weighted one. But the operations we
are going to study below only make sense in a weighted graph. We can, however, always treat

an unweighted graph as a
weighted one by giving every
edge the same, constant,
positive weight (say one).

Exercise

When treating an unweighted graph as a weighted one, why do we care that
every edge be given a positive weight?

Exercise

Revise the graph data definitions to account for edge weights.

Exercise

Weights are not the only kind of data we might record about edges. For
instance, if the nodes in a graph represent people, the edges might be labeled
with their relationship (“mother”, “friend”, etc.). What other kinds of data
can you imagine recording for edges?
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20.7 Shortest (or Lightest) Paths

Imagine planning a trip: it’s natural that you might want to get to your destina-
tion in the least time, or for the least money, or some other criterion that involves
minimizing the sum of edge weights. This is known as computing the shortest path.

We should immediately clarify an unfortunate terminological confusion. What
we really want to compute is the lightest path—the one of least weight. Unfortu-
nately, computer science terminology has settled on the terminology we use here;
just be sure to not take it literally.

Exercise

Construct a graph and select a pair of nodes in it such that the shortest path
from one to the other is not the lightest one, and vice versa.

We have already seen [section 20.5] that breadth-first search constructs shortest
paths in unweighted graphs. These correspond to lightest paths when there are no
weights (or, equivalently, all weights are identical and positive). Now we have to
generalize this to the case where the edges have weights.

We will proceed inductively, gradually defining a function seemingly of this
type

w :: Key -> Number
that reflects the weight of the lightest path from the source node to that one. But
let’s think about this annotation: since we’re building this up node-by-node, ini-
tially most nodes have no weight to report; and even at the end, a node that is
unreachable from the source will have no weight for a lightest (or indeed, any)
path. Rather than make up a number that pretends to reflect this situation, we will
instead use an option type:

w :: Key -> Option<Number>
When there is some value it will be the weight; otherwise the weight will be none.

Now let’s think about this inductively. What do we know initially? Well,
certainly that the source node is at a distance of zero from itself (that must be
the lightest path, because we can’t get any lighter). This gives us a (trivial) set of
nodes for which we already know the lightest weight. Our goal is to grow this set of
nodes—modestly, by one, on each iteration—until we either find the destination,
or we have no more nodes to add (in which case our desination is not reachable
from the source).

Inductively, at each step we have the set of all nodes for which we know the
lightest path (initially this is just the source node, but it does mean this set is never
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empty, which will matter in what we say next). Now consider all the edges adjacent
to this set of nodes that lead to nodes for which we don’t already know the lightest
path. Choose a node, q, that minimizes the total weight of the path to it. We claim
that this will in fact be the lightest path to that node.

If this claim is true, then we are done. That’s because we would now add q
to the set of nodes whose lightest weights we now know, and repeat the process
of finding lightest outgoing edges from there. This process has thus added one
more node. At some point we will find that there are no edges that lead outside the
known set, at which point we can terminate.

It stands to reason that terminating at this point is safe: it corresponds to having
computed the reachable set. The only thing left is to demonstrate that this greedy
algorithm yields a lightest path to each node.

We will prove this by contradiction. Suppose we have the path s → d from
source s to node d, as found by the algorithm above, but assume also that we have
a different path that is actually lighter. At every node, when we added a node along
the s → d path, the algorithm would have added a lighter path if it existed. The
fact that it did not falsifies our claim that a lighter path exists (there could be a
different path of the same weight; this would be permitted by the algorithm, but
it also doesn’t contradict our claim). Therefore the algorithm does indeed find the
lightest path.

What remains is to determine a data structure that enables this algorithm. At
every node, we want to know the least weight from the set of nodes for which we
know the least weight to all their neighbors. We could achieve this by sorting, but
this is overkill: we don’t actually need a total ordering on all these weights, only
the lightest one. A heap [REF] gives us this.

Exercise

What if we allowed edges of weight zero? What would change in the above
algorithm?

Exercise

What if we allowed edges of negative weight? What would change in the
above algorithm?

For your reference, this algorithm is known as Dijkstra’s Algorithm.
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20.8 Moravian Spanning Trees

At the turn of the milennium, the US National Academy of Engineering surveyed
its members to determine the “Greatest Engineering Achievements of the 20th Cen-
tury”. The list contained the usual suspects: electronics, computers, the Internet,
and so on. But a perhaps surprising idea topped the list: (rural) electrification.Read more about it on their site.

20.8.1 The Problem

To understand the history of national electrical grids, it helps to go back to Moravia
in the 1920s. Like many parts of the world, it was beginning to realize the benefits
of electricity and intended to spread it around the region. A Moravian academia
named Otakar Borůvka heard about the problem, and in a remarkable effort, de-
scribed the problem abstractly, so that it could be understood without reference to
Moravia or electrical networks. He modeled it as a problem about graphs.

Borůvka observed that at least initially, any solution to the problem of creating
a network must have the following characteristics:

• The electrical network must reach all the towns intended to be covered by it.
In graph terms, the solution must be spanning, meaning it must visit every
node in the graph.

• Redundancy is a valuable property in any network: that way, if one set of
links goes down, there might be another way to get a payload to its destina-
tion. When starting out, however, redundancy may be too expensive, espe-
cially if it comes at the cost of not giving someone a payload at all. Thus,
the initial solution was best set up without loops or even redundant paths. In
graph terms, the solution had to be a tree.

• Finally, the goal was to solve this problem for the least cost possible. In
graph terms, the graph would be weighted, and the solution had to be a
minimum.

Thus Borůvka defined the Moravian Spanning Tree (MST) problem.

20.8.2 A Greedy Solution

Borůvka had published his problem, and another Czech mathematician, Vojtěch
Jarník, came across it. Jarník came up with a solution that should sound familiar:

• Begin with a solution consisting of a single node, chosen arbitrarily. For
the graph consisting of this one node, this solution is clearly a minimum,
spanning, and a tree.

http://www.greatachievements.org/
http://en.wikipedia.org/wiki/Moravia
http://en.wikipedia.org/wiki/Vojt%C4%9Bch_Jarn%C3%ADk
http://en.wikipedia.org/wiki/Vojt%C4%9Bch_Jarn%C3%ADk
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• Of all the edges incident on nodes in the solution that connect to a node not
already in the solution, pick the edge with the least weight. Note that we consider only the

incident edges, not their weight
added to the weight of the node
to which they are incident.

• Add this edge to the solution. The claim is that for the new solution will be
a tree (by construction), spanning (also by construction), and a minimum.
The minimality follows by an argument similar to that used for Dijkstra’s
Algorithm.

Jarník had the misfortune of publishing this work in Czech in 1930, and it
went largely ignored. It was rediscovered by others, most notably by R.C. Prim in
1957, and is now generally known as Prim’s Algorithm, though calling it Jarník’s
Algorithm would attribute credit in the right place.

Implementing this algorithm is pretty easy. At each point, we need to know the
lightest edge incident on the current solution tree. Finding the lightest edge takes
time linear in the number of these edges, but the very lightest one may create a cy-
cle. We therefore need to efficiently check for whether adding an edge would create
a cycle, a problem we will return to multiple times [section 20.8.5]. Assuming we
can do that effectively, we then want to add the lightest edge and iterate. Even
given an efficient solution for checking cyclicity, this would seem to require an
operation linear in the number of edges for each node. With better representations
we can improve on this complexity, but let’s look at other ideas first.

20.8.3 Another Greedy Solution

Recall that Jarník presented his algorithm in 1930, when computers didn’t exist,
and Prim his in 1957, when they were very much in their infancy. Programming
computers to track heaps was a non-trivial problem, and many algorithms were
implemented by hand, where keeping track of a complex data structure without
making errors was harder still. There was need for a solution that was required less
manual bookkeeping (literally speaking).

In 1956, Joseph Kruskal presented such a solution. His idea was elegantly
simple. The Jarník algorithm suffers from the problem that each time the tree
grows, we have to revise the content of the heap, which is already a messy structure
to track. Kruskal noted the following.

To obtain a minimum solution, surely we want to include one of the edges
of least weight in the graph. Because if not, we can take an otherwise minimal
solution, add this edge, and remove one other edge; the graph would still be just as
connected, but the overall weight would be no more and, if the removed edge were
heavier, would be less. By the same argument we can add the next lightest edge, Note the careful wording: there

may be many edges of the same
least weight, so adding one of
them may remove another, and
therefore not produce a lighter
tree; but the key point is that it
certainly will not produce a
heavier one.

and the next lightest, and so on. The only time we cannot add the next lightest edge
is when it would create a cycle (that problem again!).

http://en.wikipedia.org/wiki/Joseph_Kruskal
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Therefore, Kruskal’s algorithm is utterly straightforward. We first sort all the
edges, ordered by ascending weight. We then take each edge in ascending weight
order and add it to the solution provided it will not create a cycle. When we have
thus processed all the edges, we will have a solution that is a tree (by construction),
spanning (because every connected vertex must be the endpoint of some edge), and
of minimum weight (by the argument above). The complexity is that of sorting
(which is [e → e log e] where e is the size of the edge set. We then iterate over
each element in e, which takes time linear in the size of that set—modulo the time
to check for cycles. This algorithm is also easy to implement on paper, because we
sort all the edges once, then keep checking them off in order, crossing out the ones
that create cycles—with no dynamic updating of the list needed.

20.8.4 A Third Solution

Both the Jarník and Kruskal solutions have one flaw: they require a centralized data
structure (the priority heap, or the sorted list) to incrementally build the solution.
As parallel computers became available, and graph problems grew large, com-
puter scientists looked for solutions that could be implemented more efficiently in
parallel—which typically meant avoiding any centralized points of synchroniza-
tion, such as these centralized data structures.

In 1965, M. Sollin constructed an algorithm that met these needs beautifully.
In this algorithm, instead of constructing a single solution, we grow multiple solu-
tion components (potentially in parallel if we so wish). Each node starts out as a
solution component (as it was at the first step of Jarník’s Algorithm). Each node
considers the edges incident to it, and picks the lightest one that connects to a dif-
ferent component (that problem again!). If such an edge can be found, the edge
becomes part of the solution, and the two components combine to become a single
component. The entire process repeats.

Because every node begins as part of the solution, this algorithm naturally
spans. Because it checks for cycles and avoids them, it naturally forms a tree.Note that avoiding cycles yields

a DAG and is not automatically
guaranteed to yield a tree. We
have been a bit lax about this
difference throughout this
section.

Finally, minimality follows through similar reasoning as we used in the case of
Jarník’s Algorithm, which we have essentially run in parallel, once from each node,
until the parallel solution components join up to produce a global solution.

Of course, maintaining the data for this algorithm by hand is a nightmare.
Therefore, it would be no surprise that this algorithm was coined in the digital
age. The real surprise, therefore, is that it was not: it was originally created by
Otakar Borůvka himself.

Borůvka, you see, had figured it all out. He’d not only understood the problem,
he had:

http://en.wikipedia.org/wiki/Otakar_Bor%C5%AFvka
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• pinpointed the real problem lying underneath the electrification problem so
it could be viewed in a context-independent way,

• created a descriptive language of graph theory to define it precisely, and

• even solved the problem in addition to defining it.

He’d just come up with a solution so complex to implement by hand that Jarník
had in essence de-parallelized it so it could be done sequentially. And thus this
algorithm lay unnoticed until it was reinvented (several times, actually) by Sollin
in time for parallel computing folks to notice a need for it. But now we can just
call this Borůvka’s Algorithm, which is only fitting.

As you might have guessed by now, this problem is indeed called the MST in
other textbooks, but “M” stands not for Moravia but for “Minimum”. But given
Borůvka’s forgotten place in history, we prefer the more whimsical name.

20.8.5 Checking Component Connectedness

As we’ve seen, we need to be able to efficiently tell whether two nodes are in
the same component. One way to do this is to conduct a depth-first traversal (or
breadth-first traversal) starting from the first node and checking whether we ever
visit the second one. (Using one of these traversal strategies ensures that we ter-
minate in the presence of loops.) Unfortunately, this takes a linear amount of time
(in the size of the graph) for every pair of nodes—and depending on the graph
and choice of node, we might do this for every node in the graph on every edge
addition! So we’d clearly like to do this better.

It is helpful to reduce this problem from graph connectivity to a more general
one: of disjoint-set structure (colloquially known as union-find for reasons that
will soon be clear). If we think of each connected component as a set, then we’re
asking whether two nodes are in the same set. But casting it as a set membership
problem makes it applicable in several other applications as well.

The setup is as follows. For arbitrary values, we want the ability to think of
them as elements in a set. We are interested in two operations. One is obviously
union, which merges two sets into one. The other would seem to be something
like is-in-same-set that takes two elements and determines whether they’re
in the same set. Over time, however, it has proven useful to instead define the
operator find that, given an element, “names” the set (more on this in a moment)
that the element belongs to. To check whether two elements are in the same set, we
then have to get the “set name” for each element, and check whether these names
are the same. This certainly sounds more roundabout, but this means we have

http://en.wikipedia.org/wiki/Bor%C5%AFvka's_algorithm
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a primitive that may be useful in other contexts, and from which we can easily
implement is-in-same-set.

Now the question is, how do we name sets? The real question we should ask is,
what operations do we care to perform on these names? All we care about is, given
two names, they represent the same set precisely when the names are the same.
Therefore, we could construct a new string, or number, or something else, but we
have another option: simply pick some element of the set to represent it, i.e., to
serve as its name. Thus we will associate each set element with an indicator of the
“set name” for that element; if there isn’t one, then its name is itself (the none
case of parent):

data Element<T>:
| elt(val :: T, parent :: Option<Element>)

end

We will assume we have some equality predicate for checking when two elements
are the same, which we do by comparing their value parts, ignoring their parent
values:

fun is-same-element(e1, e2): e1.val <=> e2.val end

Do Now!

Why do we check only the value parts?

We will assume that for a given set, we always return the same representative
element. (Otherwise, equality will fail even though we have the same set.) Thus:We’ve used the name fynd

because find is already
defined to mean something else
in Pyret. If you don’t like the
misspelling, you’re welcome to
use a longer name like
find-root.

fun is-in-same-set(e1 :: Element, e2 :: Element, s :: Sets)
-> Boolean:

s1 = fynd(e1, s)
s2 = fynd(e2, s)
identical(s1, s2)

end

where Sets is the list of all elements:

type Sets = List<Element>
How do we find the representative element for a set? We first find it using

is-same-element; when we do, we check the element’s parent field. If
it is none, that means this very element names its set; this can happen either
because the element is a singleton set (we’ll initialize all elements with none), or
it’s the name for some larger set. Either way, we’re done. Otherwise, we have to
recursively find the parent:
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fun fynd(e :: Element, s :: Sets) -> Element:
cases (List) s:
| empty => raise("fynd: shouldn’t have gotten here")
| link(f, r) =>
if is-same-element(f, e):

cases (Option) f.parent:
| none => f
| some(p) => fynd(p, s)

end
else:

fynd(e, r)
end

end
end

Exercise

Why is there a recursive call in the nested cases?

What’s left is to implement union. For this, we find the representative ele-
ments of the two sets we’re trying to union; if they are the same, then the two sets
are already in a union; otherwise, we have to update the data structure:

fun union(e1 :: Element, e2 :: Element, s :: Sets) -> Sets:
s1 = fynd(e1, s)
s2 = fynd(e2, s)
if identical(s1, s2):

s
else:
update-set-with(s, s1, s2)

end
end

To update, we arbitrarily choose one of the set names to be the name of the new
compound set. We then have to update the parent of the other set’s name element
to be this one:

fun update-set-with(s :: Sets, child :: Element, parent :: Element)
-> Sets:

cases (List) s:
| empty => raise("update: shouldn’t have gotten here")
| link(f, r) =>
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if is-same-element(f, child):
link(elt(f.val, some(parent)), r)

else:
link(f, update-set-with(r, child, parent))

end
end

end

Here are some tests to illustrate this working:

check:
s0 = map(elt(_, none), [list: 0, 1, 2, 3, 4, 5, 6, 7])
s1 = union(index(s0, 0), index(s0, 2), s0)
s2 = union(index(s1, 0), index(s1, 3), s1)
s3 = union(index(s2, 3), index(s2, 5), s2)
print(s3)
is-same-element(fynd(index(s0, 0), s3), fynd(index(s0, 5), s3)) is true
is-same-element(fynd(index(s0, 2), s3), fynd(index(s0, 5), s3)) is true
is-same-element(fynd(index(s0, 3), s3), fynd(index(s0, 5), s3)) is true
is-same-element(fynd(index(s0, 5), s3), fynd(index(s0, 5), s3)) is true
is-same-element(fynd(index(s0, 7), s3), fynd(index(s0, 7), s3)) is true

end

Unfortunately, this implementation suffers from two major problems:

• First, because we are performing functional updates, the value of the parent
reference keeps “changing”, but these changes are not visible to older copies
of the “same” value. An element from different stages of unioning has differ-
ent parent references, even though it is arguably the same element through-
out. This is a place where functional programming hurts.

• Relatedly, the performance of this implementation is quite bad. fynd re-
cursively traverses parents to find the set’s name, but the elements traversed
are not updated to record this new name. We certainly could update them by
reconstructing the set afresh each time, but that complicates the implemen-
tation and, as we will soon see, we can do much better.

The bottom line is that pure functional programming is not a great fit with this
problem. We need a better implementation strategy: section 22.1.



Chapter 21

State, Change, and More Equality

21.1 A Canonical Mutable Structure

As we have motivated [section 20.8.5], sometimes it’s nice to be able to change
the value of a datum rather than merely construct a new one with an updated value.
The main advantage to changing it is that every value that refers to it can now see
this change. The main disadvantage to changing it is that every value that refers to
it can now see this change. Using this power responsibly is therefore an important
programming challenge.

To put this idea in the simplest light, let us consider the simplest kind of mu-
table datum: one that has only one field. We call this a box, and treat it as a fresh
container type. Boxes will support just three operations:

1. box consumes a value and creates a mutable box containing that value.

2. unbox consumes a box and returns the value contained in the box.

3. set-box consumes a box, a new value, and changes the box to contain the
value. All subsequent unboxes of that box will now return the new value.

In a typed language, we would require that the new value put in the box by set-box
be type-consistent with what was there before. (Even in a language that isn’t stati-
cally typed, we would presumably expect the same to keep the programming pro-
cess sane.) You can thus think of a box as equivalent to a Java container class with
parameterized type, which has a single member field with a getter and setter: box
is the constructor, unbox is the getter, and set-box is the setter. (Because there
is only one field, its name is irrelevant.)
class Box<T> {

private T the_value;

243
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Box(T v) {
this.the_value = v;

}
T get() {

return this.the_value;
}
void set(T v) {

this.the_value = v;
}

}
Correspondingly, here is a definition of a box in Pyret:

data Box:
| box(ref v)

where:
n1 = box(1)
n2 = box(2)
n1!{v : 3}
n2!{v : 4}
n1!v is 3
n2!v is 4

end

Notice that in Pyret, because values are immutable by default, we have to explicitly
declare the v field to be mutable using ref; mutable fields must be accessed using
! rather than ., the dot operator.The reason for using a different

syntax is to warn the
programmer that the value
obtained from this field may
change over time, so they
should not make assumptions
about its longevity. Because
Pyret is single-threaded,
however, they can assume the
value will stay unchanged until
either the next mutation in the
same procedure, or until the
next call to another procedure
or return from this
procedure—whichever comes
soonest.

Do Now!

Why do we say “type-consistent” above, rather than “the same type”?

The values could be related by subtyping [section 32.6.1].

Exercise

What does the comment about longevity mean? How does this apply to
reusing values extracted from fields?

21.2 Equality and Mutation

We’ve already seen [section 19.1] that equality is subtle. It’s about to become
much subtler with the introduction of mutation!
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First, let’s make sure we understand how mutable fields operate with equality.
As a running example, we’ll work with:
<three-boxes> ::=

b0 = box("a value")
b1 = box("a value")
b2 = b1

Observe that b1 and b2 are referring to the same box, while b0 is referring to a
different one. We can see this because the following tests pass:

check:
b0!v is b1!v
b1!v is b2!v

b0 is-not%(identical) b1
b1 is%(identical) b2
b0 is-not%(identical) b2

end

In other words, b1 and b2 are aliases for each other: they are two different names
for one and the same value. In contrast, neither name is an alias for the value
referred to by b0. Since identical is transitive, it follows from the above two
checks (and Pyret confirms for us) that b0 is not identical to b2.

21.2.1 Observing Mutation

In the presence of mutation, the subtleties we’ve discussed about equality become
even more significant. Specifically, if we change one value, all aliases to that value
detect the change. Consider the following code:
<modify-b1> ::=

b1!{v: "a different value"}
Observe that if you just copy
these definitions and tests one
after the other in your editor,
tests that should succeed will
fail. This is because Pyret
moves all test blocks to the end
of the program, so the checks
are not running in the source
location where they are written.
Until now, this made not a whit
of difference. Now that we have
mutation, it makes a world of
difference. Therefore, you will
need to erase old tests as you
add new code that modifies
state. Because that is the point
of state: statements that were
previously true no longer are.

Do Now!

Which of the following tests do you expect to change?

• b0!v is b1!v

• b1!v is b2!v

• b0 is-not%(identical) b1

• b1 is%(identical) b2
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Values that were not previously equal (by any measure) are not going to become
so as a result of a change; however, values that appeared to be equal will no longer
be: specifically, b0!v is b1!v will no longer be true.

Symmetrically, we can modify the value in b2 and the change will be visible
via b1, but not b0:

b2!{v: "yet another value"}

check:
b0!v is-not b1!v
b1!v is b2!v

b0 is-not%(identical) b1
b1 is%(identical) b2
b0 is-not%(identical) b2

end

after which we can restore the value:

b1!{v: hold-b1-value}

Exercise

Modify the content of b0 and see which tests break.

21.2.2 What it Means to be Identical

Before we modify the content of these boxes, we could hold on to their values:

hold-b1-value = b1!v
b1!{v: "a different value"}
And at the end of performing comparisons, we can restore them:

b1!{v: hold-b1-value}
Thus, at the end there has been no change, but by making the change we can check
which values are and aren’t aliases of others. In other words, thisimplements the
essence of identical.

In practice, identical does not behave this way: it would be too disruptive—
e.g., if this fake value was saved to persistent storage and then the system crashed—
and it would anyway be observable if the system had multiple threads. It is also
not the most efficient implementation possible. Nevertheless, it does demonstrate
the basic idea behind identical: two values are identical precisely when,
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when you make changes to one, you see the changes manifest on the “other” (i.e.,
there is really only one value, but with potentially multiple names for it).

21.2.3 An Additional Challenge

If all this is a little confusing, don’t fret: aliasing is a vexing problem in pro-
gramming, and trips up even the most experienced programmers. Not properly
understanding the aliasing behavior in code causes various errors (when it’s under-
estimated) or loss of performance (when it’s overestimated). One of the benefits of
the functional style we’ve adopted until now is we don’t have to worry about the
impact of aliasing.

Nevertheless, if you’re reading this, you’re trying to become a more thorough
programmer, which means you should get a grasp of this topic. Here’s an extension
to the code in section 21.1, before any mutations:

b4 = box(b1!v)
Here are a few tests, some or all of which may surprise you:

check:
b1!v is b4!v
b1!v is%(identical) b4!v
b1 is-not%(identical) b4

end

Now suppose we add

b1!{v: "new value"}
What does this do to our tests? Why?

21.3 Recursion and Cycles from Mutation

Mutation can also help us make sense of recursion. Let us return to the example
we tried to write earlier [section 19.4]:

web-colors = link("white", link("grey", web-colors))
which, as we noted, does not pass muster because web-colors is not bound
on the right of the =. (Why not? Because otherwise, if we try to substitute
web-colors on the right, we would end up in an infinite regress.)

Something about this should make you a little suspicious: we have been able
to write recursive functions all the time, without difficulty. Why are they different?
For two reasons:
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• The first reason is the fact that we’re defining a function. A function’s body
is not evaluated right away—only when we apply it—so the language can
wait for the body to finish being defined. (We’ll see what this might mean in
a moment.)

• The second reason isn’t actually a reason: function definitions actually are
special. But we are about to expose what’s so special about them—it’s the
use of a box!—so that any definition can avail of it.

Returning to our example above, recall that we can’t make up our list using
links, because we want the list to never terminate. Therefore, let us first define a
new datatype to hold an cyclig list.

data CList: clink(v, r) end

Observe that we have carefully avoided writing type definitions for the fields; we
will instead try to figure them out as we go along. Also, however, this definition as
written cannot work.

Do Now!

Do you see why not?

Let’s decompose the intended infinite list into two pieces: lists that begin with
white and ones that begin with grey. What follows white? A grey list. What follows
grey? A white list. It is clear we can’t write down these two definitions because
one of them must precede the other, but each one depends on the other. (This is the
same problem as trying to write a single definition above.)

21.3.1 Partial Definitions

What we need to instead do is to partially define each list, and then complete
the definition using the other one. However, that is impossible using the above
definition, because we cannot change anything once it is constructed. Instead,
therefore, we need:

data CList: clink(v, ref r) end

Note that this datatype lacks a base case, which should remind you of definitions
we saw in section 15.3.

Using this, we can define:

white-clink = clink("white", "dummy")
grey-clink = clink("grey", "dummy")
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Each of these definitions is quite useless by itself, but they each represent what we
want, and they have a mutable field for the rest, currently holding a dummy value.
Therefore, it’s clear what we must do next: update the mutable field.

white-clink!{r: grey-clink}
grey-clink!{r: white-clink}
Because we have ordained that our colors must alternate beginning with white, this
rounds up our definition:

web-colors = white-clink
If we ask Pyret to inspect the value of web-colors, we notice that it employs an
algorithm to prevent traversing infinite objects. We can define a helper function,
take, a variation of which we saw earlier [section 15.3], to inspect a finite prefix
of an infinite list:

fun take(n :: Number, il :: CList) -> List:
if n == 0:

empty
else:
link(il.v, take(n - 1, il!r))

end
end

such that:

check:
take(4, web-colors) is
[list: "white", "grey", "white", "grey"]

end

21.3.2 Recursive Functions

Based on this, we can now understand recursive functions. Consider a very simple
example, such as this:

fun sum(n):
if n > 0:

n + sum(n - 1)
else:

0
end

end
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We might like to think this is equivalent to:

sum =
lam(n):
if n > 0:
n + sum(n - 1)

else:
0

end
end

but if you enter this, Pyret will complain that sum is not bound. We must instead
write

rec sum =
lam(n):
if n > 0:
n + sum(n - 1)

else:
0

end
end

What do you think rec does? It binds sum to a box initially containing a dummy
value; it then defines the function in an environment where the name is bound,
unboxing the use of the name; and finally, it replaces the box’s content with the
defined function, following the same pattern we saw earlier for web-colors.

21.3.3 Premature Evaluation

Observe that the above description reveals that there is a time between the creation
of the name and the assignment of a value to it. Can this intermediate state be
observed? It sure can!

There are generally three solutions to this problem:

1. Make sure the value is sufficiently obscure so that it can never be used in a
meaningful context. This means values like 0 are especially bad, and indeed
most common datatypes should be shunned. Indeed, there is no value already
in use that can be used here that might not be confusing in some context.

2. The language might create a new type of value just for use here. For instance,
imagine this definition of CList:
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data CList:
| undef
| clink(v, ref r)

end

undef appears to be a “base case”, thus making CList very similar to
List. In truth, however, the undef is present only until the first mutation
happens, after which it will never again be present: the intent is that r only
contain a reference to other clinks.

The undef value can now be used by the language to check for premature
uses of a cyclic list. However, while this is technically feasible, it imposes
a run-time penalty. Therefore, this check is usually only performed by lan-
guages focused on teaching; professional programmers are assumed to be
able to manage the consequences of such premature use by themselves.

3. Allow the recursion constructor to be used only in the case of binding func-
tions, and then make sure that the right-hand side of the binding is syntacti-
cally a function. This solution precludes some reasonable programs, but is
certainly safe.

21.3.4 Cyclic Lists Versus Streams

The color list example above is, as we have noted, very reminiscent of stream
examples. What is the relationship between the two ways of defining infinite data?

Cyclic lists have on their side simplicity. The pattern of definition used above
can actually be encapsulated into a language construct using desugaring [section 24.4],
so programmers do not need to wrestle with mutable fields (as above) or thunks (as
streams demand). This simplicity, however, comes at a price: cyclic lists can only
represent strictly repeating data, i.e., you cannot define nats or fibs as cyclic
lists. In contrast, the function abstraction in a stream makes it generative: each
invocation can create a truly novel datum (such as the next natural or Fibonacci
number). Therefore, it is straightforward to implement cyclic lists as streams, but
not vice versa.

21.4 From Identifiers to Variables

As we have seen, mutable values can be aliased, which means references can inad-
vertently have their values changed. Because these values can be passed around, it
can be difficult to track all the aliases that might exist (because it would be infeasi-
ble for a value to retain “backward references”).
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Therefore, in Pyret as in most languages, there is another form of mutable,
called a variable. A variable is an identifier whose binding can be changed (as
opposed to re-bound in a new scope); in Pyret, the syntax for changing the value of
a variable is :=. Furthermore, variables must be declared explicitly by preceding
their declaration with var:

var x = 0
x := 1
The var keyword forces you to understand that the = is not a true equality: it’s
equal for now, but may not be in the future.

We’ve insisted on using the word “identifier” before because we wanted to
reserve “variable” for what we’re about to study. In Java, when we say (assuming
x is locally bound, e.g., as a method parameter)
x = 1;
x = 3;
we’re asking to change the value of x. After the first assignment, the value of x is
1; after the second one, it’s 3. Thus, the value of x varies over the course of the
execution of the method.

Now, we also use the term “variable” in mathematics to refer to function pa-
rameters. For instance, in f(y) = y+3 we say that y is a “variable”. That is called
a variable because it varies across invocations; however, within each invocation, it
has the same value in its scope. Our identifiers until now have corresponded to this
mathematical notion of a variable. In contrast, programming variables can varyIf the identifier was bound to a

box, then it remained bound to
the same box value. It’s the
content of the box that changed,
not which box the identifier was
bound to.

even within each invocation, like the Java x above.
Henceforth, we will use variable when we mean an identifier whose value can

change within its scope, and identifier when this cannot happen. If in doubt, we
might play it safe and use “variable”; if the difference doesn’t really matter, we
might use either one. It is less important to get caught up in these specific terms
than to understand that they represent a distinction that matters [chapter 31].

21.5 Interaction of Mutation with Closures: Counters

Suppose we want to create a function that counts how many times it has been
invoked. Further, let us assume we can create new counters on need. Thus,
mk-counter creates a fresh counter each time, each of which maintains its own
count history. A sample use might look like this:

check:
l1 = mk-counter()
l1() is 1
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l1() is 2
l2 = mk-counter()
l2() is 1
l1() is 3
l2() is 2

end

Notice that each invocation of mk-counter makes a fresh counter, so the coun-
ters created by two separate invocations do not interfere with one another.

We now see how we can implement this using both mutable structures (specif-
ically, boxes) and variables.

21.5.1 Implementation Using Boxes

Here is the implementation:

fun mk-counter():
ctr = box(0)
lam():

ctr!{v : (ctr!v + 1)}
ctr!v

end
end

Why does this work? It’s because each invocation of mk-counter creates a
box only once, which it binds to ctr. The closure closes over this one box. All
subsequent mutations affect the same box. In contrast, swapping two lines makes
a big difference:

fun mk-broken-counter():
lam():

ctr = box(0)
ctr!{v : (ctr!v + 1)}
ctr!v

end
where:

l1 = mk-broken-counter()
l1() is 1
l1() is 1
l2 = mk-broken-counter()
l2() is 1
l1() is 1
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l2() is 1
end

In this case, a new box is allocated on every invocation, not of mk-broken-counter
but of the function that it returns, so the answer each time is the same (despite the
mutation inside the procedure). Our implementation of boxes should be certain to
preserve this distinction.

The examples above hint at an implementation necessity. Clearly, whatever the
environment closes over in the procedure returned by mk-counter must refer to
the same box each time. Yet something also needs to make sure that the value in
that box is different each time! Look at it more carefully: it must be lexically the
same, but dynamically different. This distinction will be at the heart of a strategy
for implementing state [chapter 31].

21.5.2 Implementation Using Variables

The implementation using variables is virtually identical:

fun mk-counter():
var ctr = 0
lam():
ctr := ctr + 1
ctr

end
where:

l1 = mk-counter()
l1() is 1
l1() is 2
l2 = mk-counter()
l2() is 1
l1() is 3
l2() is 2

end

And sure enough, if we swap the same critical two lines, we get the wrong behav-
ior:

fun mk-broken-counter():
lam():
var ctr = 0
ctr := ctr + 1
ctr
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end
where:

l1 = mk-broken-counter()
l1() is 1
l1() is 1
l2 = mk-broken-counter()
l2() is 1
l1() is 1
l2() is 1

end

21.6 A Family of Equality Predicates

Until now we have seen two notions of equality:

• The binary operator ==, which is also used as the equality comparison by
in when testing.

• identical, also written as <=>.

However, we haven’t discussed exactly what == means, and it turns out there are
two things it could mean, leaving us with three different notions of equality. To see
this, refresh your memory with our three boxes.

We have already covered the meaning of identical. However, there is an
intuitive level where it is unsatisfying: when our notion of equality is, “When
printed (as output) or written (as input), would these two values look the same?”,
where box("a value") and box("a value") are the “same”. That is, it
would be nice to have an equality operator—call it E1—such that

check:
E1(b0, b1) is true
E1(b1, b2) is true

end

because all three look the same when written out as values.
However, as we just saw [section 21.2.2], these equivalences can be ephemeral.

When we modify b1 (see above), clearly these no longer print identically:

››› b0

box("a value")
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››› b1

box("a different value")

››› b2

box("a different value")
so we would expect

check:
E1(b0, b1) is false
E1(b1, b2) is true

end

There is in fact such an operator in Pyret: it is called equal-now, and written as
a binary operator as =∼ (the ∼ is meant to be suggestive of hand-waving, because
the value is equal now, but you shouldn’t assume it will be in the future). As the
name and visual suggest, this is a fragile operator: you should not write programs
that assume anything about the long-term equality of values that are equal at this
moment, in case the values are mutable. However, it can still be useful to know
whether, at this instant, two values will, in effect, “print the same”.

Exercise

Confirm that equal-now does indeed have the properties ascribed to E1
above.

However, this still does not enable us to distinguish between == and identical:

check:
(b0 == b1) is false
(b1 == b2) is true
identical(b0, b1) is false
identical(b1, b2) is true

end

For that, it helps to have a slightly richer structure:

b0 = box("a value")
b1 = box("a value")
b2 = b1
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l0 = [list: b0]
l1 = [list: b1]
l2 = [list: b2]
Note that we are allocating three different lists, though two of them share the same
mutable box. Now we find something interesting. Unsurprisingly, the following is
true:

check:
identical(l0, l1) is false
identical(l1, l2) is false

end

while

check:
equal-now(l0, l1) is true
equal-now(l1, l2) is true

end

However:

check:
(l0 == l1) is false
(l1 == l2) is true

end

What might == represent that is interestingly different from both identical
and equal-now? When it returns true, it is that the two values will “print the
same” now and forever. How is this possible? It is because == recursively checks
that the two arguments are structural until it gets to a mutable field; at that point, it
checks that they are identical. If they are identical, then any change made to
one will be reflected in the other (because they are in fact the same mutable field).
That means their content, too, will always “print the same”. Therefore, we can now
reveal the name given to ==: it is equal-always.

21.6.1 A Hierarchy of Equality

Observe that if two values v1 and v2 are equal-now, they are not necessarily
equal-always; if they are equal-always, they are not necessarily identical.
We have seen examples of both these cases above.

In contrast, if two values are identical, then they are certainly going to be
equal-always. That is because their mutable fields reduce to identical,
while the immutable parts—which will be traversed structurally—are guaranteed
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to yield equality, being in fact the same value. In turn, if they satisfy equal-always
they are guaranteed to be equal-now, because the only difference is that equal-now
structurally traverses the content of mutable fields, but if these are identical (as
they must be, to be equal-always), they are certain to be structurally equal.

In most languages, it is common to have two equality operators, corresponding
to identical (known as reference equality) and equal-now (known as struc-
tural equality). Pyret is rare in having a third operator, equal-always. For most
programs, this is in fact the most useful equality operator: it is not overly bothered
with details of aliasing, which can be difficult to predict; at the same time it makes
decisions that stand the test of time, thereby forming a useful basis for various
optimizations (which may not even be conscious of their temporal assumptions).
This is why is in testing uses equal-always by default, and forces users to
explicitly pick a different primitive if they want it.

21.6.2 Space and Time Complexity

identical always takes constant time. Indeed, some programs use identical
precisely because they want constant-time equality, carefully structuring their pro-
gram so that values that should be considered equal are aliases to the same value.
Of course, maintaining this programming discipline is tricky.

equal-always and equal-now both must traverse at least the immutable
part of data. Therefore, they take time proportional to the smaller datum (be-
cause if the two data are of different size, they must not be equal anyway, so
there is no need to visit the extra data). The difference is that equal-always
reduces to identical at references, thereby performing less computation than
equal-now would.

For some programs, the cost of checking equality may be considerable. There
are two common strategies such a program can employ:

1. Use a quick check followed by a slower check only if necessary. For in-
stance, suppose we want to speed up equal-always, and have reason to
believe we will often compare identical elements and/or that the values
being compared are very large. Then we might define:

fun my-eq(v1, v2) -> Boolean:
identical(v1, v2) or equal-always(v1, v2)

end

which has the following behavior:

check:
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my-eq(b0, b1) is false
my-eq(b1, b2) is true
my-eq(l0, l1) is false
my-eq(l1, l2) is true

end

This is exactly the same as the behavior of equal-always, but faster when
it can discharge the equality using identical without having to traverse
the data. (Observe that this is a safe optimization because identical
implies equal-always.)

2. Use a different equality strategy entirely, if possible: see section 22.2.

21.6.3 Comparing Functions

We haven’t actually provided the full truth about equality because we haven’t dis-
cussed functions. Defining equality for functions—especially extensional equality,
namely whether two functions have the same graph, i.e., for each input produce
the same output—is complicated (a euphemism for impossible) due to the Halting
Problem [REF].

Because of this, most languages have tended to use approximations for func-
tion equality, most commonly reference equality. This is, however, a very weak
approximation: even if the exact same function text in the same environment is
allocated as two different closures, these would not be reference-equal. At least
when this is done as part of the definition of identical, it makes sense; if other
operators do this, however, they are actively lying, which is something the equality
operators do not usually do.

There is one other approach we can take: simply disallow function comparison.
This is what Pyret does: all three equality operators above will result in an error
if you try to compare two functions. (You can compare against just one function,
however, and you will get the answer false.) This ensures that the language’s
comparison operators are never trusted falsely.

Pyret did have the choice of allowing reference equality for functions inside
identical and erroring only in the other two cases. Had it done so, however, it
would have violated the chain of implication above [section 21.6.1]. The present
design is arguably more elegant. Programmers who do want to use reference equal-
ity on functions can simply embed the functions inside a mutable structure like
boxes.

There is one problem with erroring when comparing two functions: a com-
pletely generic procedure that compares two arbitrary values has to be written de-
fensively. Because this is annoying, Pyret offers a three-valued version of each of
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the above three operators (identical3, equal-always3 and equal-now3),
all of which return EqualityResult values that correspond to truth, falsity, and
ignorance (returned in the case when both arguments are functions). Programmers
can use this in place of the Boolean-valued comparison operators if they are uncer-
tain about the types of the parameters.



Chapter 22

Algorithms That Exploit State

22.1 Disjoint Sets Redux

Here’s how we can use this to implement union-find afresh. We will try to keep
things as similar to the previous version [section 20.8.5] as possible, to enhance
comparison.

First, we have to update the definition of an element, making the parent field
be mutable:

data Element:
| elt(val, ref parent :: Option<Element>)

end

To determine whether two elements are in the same set, we will still rely on fynd.
However, as we will soon see, fynd no longer needs to be given the entire set of
elements. Because the only reason is-in-same-set consumed that set was to
pass it on to fynd, we can remove it from here. Nothing else changes:

fun is-in-same-set(e1 :: Element, e2 :: Element) -> Boolean:
s1 = fynd(e1)
s2 = fynd(e2)
identical(s1, s2)

end

Updating is now the crucial difference: we use mutation to change the value of the
parent:

fun update-set-with(child :: Element, parent :: Element):
child!{parent: some(parent)}

end

261
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In parent: some(parent), the first parent is the name of the field, while
the second one is the parameter name. In addition, we must use some to satisfy the
option type. Naturally, it is not none because the entire point of this mutation is
to change the parent to be the other element, irrespective of what was there before.

Given this definition, union also stays largely unchanged, other than the
change to the return type. Previously, it needed to return the updated set of ele-
ments; now, because the update is performed by mutation, there is no longer any
need to return anything:

fun union(e1 :: Element, e2 :: Element):
s1 = fynd(e1)
s2 = fynd(e2)
if identical(s1, s2):
s1

else:
update-set-with(s1, s2)

end
end

Finally, fynd. Its implementation is now remarkably simple. There is no longer
any need to search through the set. Previously, we had to search because after
union operations have occurred, the parent reference might have no longer been
valid. Now, any such changes are automatically reflected by mutation. Hence:

fun fynd(e :: Element) -> Element:
cases (Option) e!parent:

| none => e
| some(p) => fynd(p)

end
end

22.1.1 Optimizations

Look again at fynd. In the some case, the element bound to e is not the set
name; that is obtained by recursively traversing parent references. As this value
returns, however, we don’t do anything to reflect this new knowledge! Instead, the
next time we try to find the parent of this element, we’re going to perform this
same recursive traversal all over again.

Using mutation helps address this problem. The idea is as simple as can be:
compute the value of the parent, and update it.

fun fynd(e :: Element) -> Element:
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cases (Option) e!parent block:
| none => e
| some(p) =>

new-parent = fynd(p)
e!{parent: some(new-parent)}
new-parent

end
end

Note that this update will apply to every element in the recursive chain to find the
set name. Therefore, applying fynd to any of those elements the next time around
will benefit from this update. This idea is called path compression.

There is one more interesting idea we can apply. This is to maintain a rank
of each element, which is roughly the depth of the tree of elements for which that
element is their set name. When we union two elements, we then make the one
with larger rank the parent of the one with the smaller rank. This has the effect
of avoiding growing very tall paths to set name elements, instead tending towards
“bushy” trees. This too reduces the number of parents that must be traversed to
find the representative.

22.1.2 Analysis

This optimized union-find data structure has a remarkble analysis. In the worst
case, of course, we must traverse the entire chain of parents to find the name ele-
ment, which takes time proportional to the number of elements in the set. However,
once we apply the above optimizations, we never need to traverse that same chain
again! In particular, if we conduct an amortized analysis over a sequence of set
equality tests after a collection of union operations, we find that the cost for sub-
sequent checks is very small—indeed, about as small a function can get without
being constant. The actual analysis is quite sophisticated; it is also one of the most
remarkable algorithm analyses in all of computer science.

22.2 Set Membership by Hashing Redux

We have already seen solutions to set membership. First we saw how to represent
sets as lists [section 17.1], then as (balanced) binary trees [section 17.2.3]. With Don’t confuse this with

union-find, which is a different
kind of problem on sets
[section 22.1].

this we were able to reduce insertion and membership to logarithmic time in the
number of elements. Along the way, we also learned that the essence of using these
representations was to reduce any datatype to a comparable, ordered element—for
efficiency, usually a number [section 17.2.1]—which we called hashing.

http://en.wikipedia.org/wiki/Disjoint-set_data_structure
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Let us now ask whether we can use these numbers in any other way. Suppose
our set has only five elements, which map densely to the values between 0 and
4. We can then have a five element list of boolean values, where the boolean at
each index of the list indicates whether the element corresponding to that position
is in the set or not. Both membership and insertion, however, require traversing
potentially the entire list, giving us solutions linear in the number of elements.

That’s not all. Unless we can be certain that there will be only five elements,
we can’t be sure to bound the size of the representation. Also, we haven’t yet
shown how to actually hash in a way that makes the representation dense; barring
that, our space consumption gets much worse, in turn affecting time.

There is, actually, a relatively simple solution to the problem of reducing num-
bers densely to a range: given the hash, we apply modular arithmetic. That is, if
we want to use a list of five elements to represent the set, we simply compute the
hash’s modulo five. This gives us an easy solution to that problem.

Except, of course, not quite: two different hashes could easily have the same
modulus. That is, suppose we need to record that the set contains the (hash) value
5; the resulting list would be

[list: true, false, false, false, false]
Now suppose we want to ask whether the value 15 is in the set; we cannot tell from
this representation whether it’s in the set or not, because we can’t tell whether the
true represents 5, 15, 25, or any other value whose modulus 5 is 0. Therefore,
we have to record the actual elements in the set; for type-consistency, we should
be using an Option:

[list: some(5), none, none, none, none]
Now we can tell that 5 is in the set while 4 is not. However, this now makes it
impossible to have both 5 and 10 in the set; therefore, our real representation needs
to be a list at each position:

[list: [list: 5], empty, empty, empty, empty]
If we also add 10 to the set, we get:

[list: [list: 5, 10], empty, empty, empty, empty]
and now we can tell that both 5 and 10 are in the set, but 15 is not. These sub-lists
are known as buckets.

Good; now we have another way of representing sets so we can check for
membership. However, in the worst case one of those lists is going to contain all
elements in the set, and we may have to traverse the entire list to find an element in
it, which means membership testing will take time linear in the number of elements.
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Insertion, in turn, takes time proportional to the size of the modulus because we
may have to traverse the entire outer list to get to the right sub-list.

Can we improve on this?

22.2.1 Improving Access Time

Given that we currently have no way of ensuring we won’t get hash collisions, for
now we’re stuck with a list of elements at each position that could be the size of
the set we are trying to represent. Therefore, we can’t get around that (yet). But,
we’re currently paying time in the size of the outer list just to insert an element,
and surely we can do better than that!

We can, but it requires a different data structure: the array. You can look up There are other data structures
that will also do better, but the
one we’re about to see is
important and widely used.

arrays in the Pyret documentation. The key characteristics of an array are:

• Accessing the nth element of an array takes constant, not linear, time in n.
This is sometimes known as random-access, because it takes the same time
to access any random element, as opposed to just a known element.

• Arrays are updated by mutation. Thus, a change to an array is seen by all
references to the array.

The former property warrants some discussion: how can an array provide random
access whereas a list requires time linear in the index of the element we’re ac-
cessing? This is because of a trade-off: a list can be extended indefinitely as the
program extends, but an array cannot. An array must declare its size up front, and
cannot grow without copying all the elements into a larger array. Therefore, we
should only use arrays when we have a clearly identifiable upper-bound on their
size (and that bound is not too large, or else we may not even be able to find that
much contiguous space in the system). But the problem we’re working on has
exactly this characteristic.

So let’s try defining sets afresh. We start with an array of a fixed size, with
each element an empty list:

SIZE = 19
v = array-of(empty, SIZE)
We need to use modular arithmetic to find the right bucket:

fun find-bucket(n): num-modulo(n, SIZE) end

With this, we can determine whether an element is in the set:

fun get-bucket(n): array-get-now(v, find-bucket(n)) end
fun is-in(n): get-bucket(n).member(n) end
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To actually add an element to the set, we put it in the list associated with the
appropriate bucket:

fun set-bucket(n, anew): array-set-now(v, find-bucket(n), anew) end
fun put(n):

when not(is-in(n)):
set-bucket(n, link(n, get-bucket(n)))

end
end

Checking whether the element is already in the bucket is an important part of our
complexity argument because we have implicitly assumed there won’t be duplicate
elements in buckets.

Exercise

What impact do duplicate elements have on the complexity of operations?

The data structure we have defined above is known as a hash table (which is
a slightly confusing name, because it isn’t really a table of hashes, but this is the
name used conventionally in computer science).

22.2.2 Better Hashing

Using arrays therefore appears to address one issue: insertion. Finding the relevant
bucket takes constant time, linking the new element takes constant time, and so
the entire operation takes constant time...except, we have to also check whether the
element is already in the bucket, to avoid storing duplicates. We have gotten rid of
the traversal through the outer list representing the set, but the member operation
on the inner list remains unchanged. In principle it won’t, but in practice we can
make it much better.

Note that collisions are virtually inevitable. If we have uniformly distributed
data, then collisions show up sooner than we might expect. Therefore, it is wise toThis follows from the reasoning

behind what is known as the
birthday problem, commonly
presented as how many people
need to be in a room before the
likelihood that two of them
share a birthday exceeds some
percentage. For the likelihood
to exceed half we need just 23
people!

prepare for the possibility of collisions.
The key is to know something about the distribution of hash values. For in-

stance, if we knew our hash values are all multiples of 10, then using a table size of
10 would be a terrible idea (because all elements would hash to the same bucket,
turning our hash table into a list). In practice, it is common to use uncommon
prime numbers as the table size, since a random value is unlikely to have it as a di-
visor. This does not yield a theoretical improvement (unless you can make certain
assumptions about the input, or work through the math very carefully), but it works

http://en.wikipedia.org/wiki/Birthday_problem
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well in practice. In particular, since the typical hashing function uses memory ad-
dresses for objects on the heap, and on most systems these addresses are multiples
of 4, using a prime like 31 is often a fairly good bet.

22.2.3 Bloom Filters

Another way to improve the space and time complexity is to relax the properties
we expect of the operations. Right now, set membership gives perfect answers,
in that it answers true exactly when the element being checked was previously
inserted into the set. But suppose we’re in a setting where we can accept a more
relaxed notion of correctness, where membership tests can “lie” slightly in one
direction or the other (but not both, because that makes the representation almost
useless). Specifically, let’s say that “no means no” (i.e., if the set representation
says the element isn’t present, it really isn’t) but “yes sometimes means no” (i.e.,
if the set representation says an element is present, sometimes it might not be). In
short, if the set says the element isn’t in it, this should be guaranteed; but if the set
says the element is present, it may not be. In the latter case, we either need some
other—more expensive—technique to determine truth, or we might just not care.

Where is such a data structure of use? Suppose we are building a Web site that
uses password-based authentication. Because many passwords have been leaked in
well-publicized breaches, it is safe to assume that hackers have them and will guess
them. As a result, we want to not allow users to select any of these as passwords.
We could use a hash-table to reject precisely the known leaked passwords. But
for efficiency, we could use this imperfect hash instead. If it says “no”, then we
allow the user to use that password. But if it says “yes”, then either they are using
a password that has been leaked, or they have an entirely different password that,
purely by accident, has the same hash value, but no matter; we can just disallow
that password as well. A related use is for filtering out

malicious Web sites. The URL
shortening system, bitly, uses it
for this purpose.

Another example is in updating databases or memory stores. Suppose we have
a database of records, which we update frequently. It is often more efficient to
maintain a journal of changes: i.e., a list that sequentially records all the changes
that have occurred. At some interval (say overnight), the journal is “flushed”,
meaning all these changes are applied to the database proper. But that means ev-
ery read operation has become highly inefficient, because it has to check the entire
journal first (for updates) before accessing the database. Again, here we can use
this faulty notion of a hash table: if the hash of the record locator says “no”, then
the record certainly hasn’t been modified and we go directly to the database; if it
says “yes” then we have to check the journal.

We have already seen a simple example implementation of this idea earlier,
when we used a single list (or array) of booleans, with modular arithmetic, to rep-

http://word.bitly.com/post/28558800777/dablooms-an-open-source-scalable-counting-bloom
http://word.bitly.com/post/28558800777/dablooms-an-open-source-scalable-counting-bloom
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resent the set. When the set said 4 was not present, this was absolutely true; but
when it said 5 and 10 are both present, only one of these was present. The advan-
tage was a huge saving in space and time: we needed only one bit per bucket, and
did not need to search through a list to answer for membership. The downside, of
course, was a hugely inaccurate set data structure, and one with correlated failure
tied to the modulus.

There is a simple way to improve this solution: instead of having just one array,
have several (but a fixed number of them). When an element is added to the set, it
is added to each array; when checking for membership, every array is consulted.
The set only answers affirmatively to membership if all the arrays do so.

Naturally, using multiple arrays offers absolutely no advantage if the arrays are
all the same size: since both insertion and lookup are deterministic, all will yield
the same answer. However, there is a simple antidote to this: use different array
sizes. In particular, by using array sizes that are relatively prime to one another, we
minimize the odds of a clash (only hashes that are the product of all the array sizes
will fool the array).

This data structure, called a Bloom Filter, is a probabilistic data structure. Un-
like our earlier set data structure, this one is not guaranteed to always give the right

answer; but contrary to theNspace-time tradeoff , we save both space and time
by changing the problem slightly to accept incorrect answers. If we know some-
thing about the distribution of hash values, and we have some acceptable bound of
error, we can design hash table sizes so that with high probability, the Bloom Filter
will lie within the acceptable error bounds.

22.3 Avoiding Recomputation by Remembering Answers

We have on several instances already referred to a Nspace-time tradeoff . The
most obvious tradeoff is when a computation “remembers” prior results and, in-
stead of recomputing them, looks them up and returns the answers. This is an
instance of the tradeoff because it uses space (to remember prior answers) in place
of time (recomputing the answer). Let’s see how we can write such computations.

22.3.1 An Interesting Numeric Sequence

Suppose we want to create properly-parenthesized expressions, and ignore all non-
parenthetical symbols. How many ways are there of creating parenthesized expres-
sions given a certain number of opening (equivalently, closing) parentheses?

If we have zero opening parentheses, the only expression we can create is the
empty expression. If we have one opening parenthesis, the only one we can con-
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struct is “()” (there must be a closing parenthesis since we’re interested only in
properly-parenthesized expressions). If we have two opening parentheses, we can
construct “(())” and “()()”. Given three, we can construct “((()))”, “(())()”, “()(())”,
“()()()”, and “(()())”, for a total of five. And so on. Observe that the solutions
at each level use all the possible solutions at one level lower, combined in all the
possible ways.

There is actually a famous mathematical sequence that corresponds to the num-
ber of such expressions, called the Catalan sequence. It has the property of growing
quite large very quickly: starting from the modest origins above, the tenth Catalan
number (i.e., tenth element of the Catalan sequence) is 16796. A simple recurrence
formula gives us the Catalan number, which we can turn into a simple program:

fun catalan(n):
if n == 0: 1
else if n > 0:

for fold(acc from 0, k from range(0, n)):
acc + (catalan(k) * catalan(n - 1 - k))

end
end

end

This function’s tests look as follows—
<catalan-tests> ::=

check:
catalan(0) is 1
catalan(1) is 1
catalan(2) is 2
catalan(3) is 5
catalan(4) is 14
catalan(5) is 42
catalan(6) is 132
catalan(7) is 429
catalan(8) is 1430
catalan(9) is 4862
catalan(10) is 16796
catalan(11) is 58786

end
but beware! When we time the function’s execution, we find that the first few
tests run very quickly, but somewhere between a value of 10 and 20—depending
on your machine and programming language implementation—you ought to see
things start to slow down, first a little, then with extreme effect.

http://en.wikipedia.org/wiki/Catalan_number
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Do Now!

Check at what value you start to observe a significant slowdown on your
machine. Plot the graph of running time against input size. What does this
suggest?

The reason the Catalan computation takes so long is precisely because of what
we alluded to earlier: at each level, we depend on computing the Catalan number
of all the smaller levels; this computation in turn needs the numbers of all of its
smaller levels; and so on down the road.

Exercise

Map the subcomputations of catalan to see why the computation time
explodes as it does. What is the worst-case time complexity of this function?

Using State to Remember Past Answers

Therefore, this is clearly a case where trading space for time is likely to be of help.
How do we do this? We need a notion of memory that records all previous answers
and, on subsequent attempts to compute them, checks whether they are already
known and, if so, just returns them instead of recomputing them.

Do Now!

What critical assumption is this based on?

Naturally, this assumes that for a given input, the answer will always be the
same. As we have seen, functions with state violate this liberally, so typical stateful
functions cannot utilize this optimization. Ironically, we will use state to implement
this optimization, so we will have a stateful function that always returns the same
answer on a given input—and thereby use state in a stateful function to simulate a
stateless one. Groovy, dude!

First, then, we need some representation of memory. We can imagine several,
but here’s a simple one:

data MemoryCell:
| mem(in, out)

end

var memory :: List<MemoryCell> = empty
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Now how does catalan need to change? We have to first look for whether the
value is already in memory; if it is, we return it without any further computation,
but if it isn’t, then we compute the result, store it in memory, and then return it:

fun catalan(n :: Number) -> Number:
answer = find(lam(elt): elt.in == n end, memory)
cases (Option) answer block:
| none =>

result =
if n == 0: 1
else if n > 0:

for fold(acc from 0, k from range(0, n)):
acc + (catalan(k) * catalan(n - 1 - k))

end
end

memory := link(mem(n, result), memory)
result

| some(v) => v.out
end

end

And that’s it! Now running our previous tests will reveal that the answer computes
much quicker, but in addition we can dare to run bigger computations such as
catalan(50).

This process, of converting a function into a version that remembers its past
answers, is called memoization.

From a Tree of Computation to a DAG

What we have subtly done is to convert a tree of computation into a DAG over the
same computation, with equivalent calls being reused. Whereas previously each
call was generating lots of recursive calls, which induced still more recursive calls,
now we are reusing previous recursive calls—i.e., sharing the results computed
earlier. This, in effect, points the recursive call to one that had occurred earlier.
Thus, the shape of computation converts from a tree to a DAG of calls.

This has an important complexity benefit. Whereas previously we were per-
forming a super-exponential number of calls, now we perform only one call per
input and share all previous calls—thereby reducing catalan(n) to take a num-
ber of fresh calls proportional to n. Looking up the result of a previous call takes
time proportional to the size of memory (because we’ve represented it as a list;
better representations would improve on that), but that only contributes another
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linear multiplicative factor, reducing the overall complexity to quadratic in the size
of the input. This is a dramatic reduction in overall complexity. In contrast, other
uses of memoization may result in much less dramatic improvements, turning the
use of this technique into a true engineering trade-off.

The Complexity of Numbers

As we start to run larger computations, however, we may start to notice that our
computations are starting to take longer than linear growth. This is because our
numbers are growing arbitrarily large—for instance, catalan(100) is 896519947090131496687170070074100632420837521538745909320—
and computations on numbers can no longer be constant time, contrary to what we
said earlier [section 16.4]. Indeed, when working on cryptographic problems, the
fact that operations on numbers do not take constant time are absolutely critical to
fundamental complexity results (and, for instance, the presumed unbreakability of
contemporary cryptography).

Abstracting Memoization

Now we’ve achieved the desired complexity improvement, but there is still some-
thing unsatisfactory about the structure of our revised definition of catalan: the
act of memoization is deeply intertwined with the definition of a Catalan number,
even though these should be intellectually distinct. Let’s do that next.

In effect, we want to separate our program into two parts. One part defines a
general notion of memoization, while the other defines catalan in terms of this
general notion.

What does the former mean? We want to encapsulate the idea of “memory”
(since we presumably don’t want this stored in a variable that any old part of the
program can modify). This should result in a function that takes the input we want
to check; if it is found in the memory we return that answer, otherwise we compute
the answer, store it, and return it. To compute the answer, we need a function that
determines how to do so. Putting together these pieces:

data MemoryCell:
| mem(in, out)

end

fun memoize-1<T, U>(f :: (T -> U)) -> (T -> U):

var memory :: List<MemoryCell> = empty

lam(n):
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answer = find(lam(elt): elt.in == n end, memory)
cases (Option) answer block:
| none =>

result = f(n)
memory := link(mem(n, result), memory)
result

| some(v) => v.out
end

end
end

We use the name memoize-1 to indicate that this is a memoizer for single-
argument functions. Observe that the code above is virtually identical to what
we had before, except where we had the logic of Catalan number computation, we
now have the parameter f determining what to do.

With this, we can now define catalan as follows:

rec catalan :: (Number -> Number) =
memoize-1(

lam(n):
if n == 0: 1
else if n > 0:

for fold(acc from 0, k from range(0, n)):
acc + (catalan(k) * catalan(n - 1 - k))

end
end

end)
Note several things about this definition:

1. We don’t write fun catalan(...): ...; because the procedure bound
to catalan is produced by memoize-1.

2. Note carefully that the recursive calls to catalan have to be to the function
bound to the result of memoization, thereby behaving like an object [chap-
ter 32]. Failing to refer to this same shared procedure means the recursive
calls will not be memoized, thereby losing the benefit of this process.

3. We need to use rec for reasons we saw earlier [section 21.3.2].

4. Each invocation of memoize-1 creates a new table of stored results. There-
fore the memoization of different functions will each get their own tables
rather than sharing tables, which is a bad idea!
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If in doubt about how state interacts with functions, read section 21.5.

Exercise

Why is sharing memoization tables a bad idea? Be concrete.

22.3.2 Edit-Distance for Spelling Correction

Text editors, word processors, mobile phones, and various other devices now rou-
tinely implement spelling correction or offer suggestions on (mis-)spellings. How
do they do this? Doing so requires two capabilities: computing the distance be-
tween words, and finding words that are nearby according to this metric. In this
section we will study the first of these questions. (For the purposes of this dis-
cussion, we will not dwell on the exact definition of what a “word” is, and just
deal with strings instead. A real system would need to focus on this definition in
considerable detail.)

Do Now!

Think about how you might define the “distance between two words”. Does
it define a metric space?

Exercise

Will the definition we give below define a metric space over the set of words?

Though there may be several legitimate ways to define distances between words,
here we care about the distance in the very specific context of spelling mistakes.
Given the distance measure, one use might be to compute the distance of a given
word from all the words in a dictionary, and offer the closest word (i.e., the one
with the least distance) as a proposed correction. Given such an intended use, weObviously, we can’t compute

the distance to every word in a
large dictionary on every single
entered word. Making this
process efficient constitutes the
other half of this problem.
Briefly, we need to quickly
discard most words as unlikely
to be close enough, for which a
representation such as a
bag-of-words (here, a bag of
characters) can greatly help.

would like at least the following to hold:

• That the distance from a word to itself be zero.

• That the distance from a word to any word other than itself be strictly posi-
tive. (Otherwise, given a word that is already in the dictionary, the “correc-
tion” might be a different dictionary word.)

• That the distance between two words be symmetric, i.e., it shouldn’t matter
in which order we pass arguments.

http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Bag-of-words_model
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Exercise

Observe that we have not included the triangle inequality relative to the prop-
erties of a metric. Why not? If we don’t need the triangle inequality, does
this let us define more interesting distance functions that are not metrics?

Given a pair of words, the assumption is that we meant to type one but actually
typed the other. Here, too, there are several possible definitions, but a popular one
considers that there are three ways to be fat-fingered:

1. we left out a character;

2. we typed a character twice; or,

3. we typed one character when we meant another.

In particular, we are interested in the fewest edits of these forms that need to be
performed to get from one word to the other. For natural reasons, this notion of
distance is called the edit distance or, in honor of its creator, the Levenshtein dis-
tance. See more on Wikipedia.

There are several variations of this definition possible. For now, we will con-
sider the simplest one, which assumes that each of these errors has equal cost. For
certain input devices, we may want to assign different costs to these mistakes; we
might also assign different costs depending on what wrong character was typed
(two characters adjacent on a keyboard are much more likely to be a legitimate
error than two that are far apart). We will return briefly to some of these consider-
ations later [section 22.3.3].

Under this metric, the distance between “kitten” and “sitting” is 3 because we
have to replace “k” with “s”, replace “e” with “i”, and insert “g” (or symmetrically,
perform the opposite replacements and delete “g”). Here are more examples:
<levenshtein-tests> ::=

check:
levenshtein(empty, empty) is 0
levenshtein([list:"x"], [list: "x"]) is 0
levenshtein([list: "x"], [list: "y"]) is 1
# one of about 600
levenshtein(

[list: "b", "r", "i", "t", "n", "e", "y"],
[list: "b", "r", "i", "t", "t", "a", "n", "y"])
is 3

# http://en.wikipedia.org/wiki/Levenshtein_distance
levenshtein(

http://en.wikipedia.org/wiki/Levenshtein_distance
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[list: "k", "i", "t", "t", "e", "n"],
[list: "s", "i", "t", "t", "i", "n", "g"])
is 3

levenshtein(
[list: "k", "i", "t", "t", "e", "n"],
[list: "k", "i", "t", "t", "e", "n"])
is 0

# http://en.wikipedia.org/wiki/Levenshtein_distance
levenshtein(

[list: "S", "u", "n", "d", "a", "y"],
[list: "S", "a", "t", "u", "r", "d", "a", "y"])
is 3

# http://www.merriampark.com/ld.htm
levenshtein(

[list: "g", "u", "m", "b", "o"],
[list: "g", "a", "m", "b", "o", "l"])
is 2

# http://www.csse.monash.edu.au/∼lloyd/tildeStrings/Alignment/92.IPL.html
levenshtein(

[list: "a", "c", "g", "t", "a", "c", "g", "t", "a", "c", "g", "t"],
[list: "a", "c", "a", "t", "a", "c", "t", "t", "g", "t", "a", "c", "t"])
is 4

levenshtein(
[list: "s", "u", "p", "e", "r", "c", "a", "l", "i",

"f", "r", "a", "g", "i", "l", "i", "s", "t" ],
[list: "s", "u", "p", "e", "r", "c", "a", "l", "y",

"f", "r", "a", "g", "i", "l", "e", "s", "t" ])
is 2

end
The basic algorithm is in fact very simple:
<levenshtein> ::=

rec levenshtein :: (List<String>, List<String> -> Number) =
<levenshtein-body>

where, because there are two list inputs, there are four cases, of which two are
symmetric:
<levenshtein-body> ::=

lam(s, t):
<levenshtein-both-empty>
<levenshtein-one-empty>
<levenshtein-neither-empty>
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end
If both inputs are empty, the answer is simple:
<levenshtein-both-empty> ::=
if is-empty(s) and is-empty(t): 0

When one is empty, then the edit distance corresponds to the length of the other,
which needs to inserted (or deleted) in its entirety (so we charge a cost of one per
character):
<levenshtein-one-empty> ::=

else if is-empty(s): t.length()
else if is-empty(t): s.length()

If neither is empty, then each has a first character. If they are the same, then there
is no edit cost associated with this character (which we reflect by recurring on the
rest of the words without adding to the edit cost). If they are not the same, however,
we consider each of the possible edits:
<levenshtein-neither-empty> ::=

else:
if s.first == t.first:
levenshtein(s.rest, t.rest)

else:
min3(

1 + levenshtein(s.rest, t),
1 + levenshtein(s, t.rest),
1 + levenshtein(s.rest, t.rest))

end
end

In the first case, we assume s has one too many characters, so we compute the
cost as if we’re deleting it and finding the lowest cost for the rest of the strings
(but charging one for this deletion); in the second case, we symmetrically assume
t has one too many; and in the third case, we assume one character got replaced
by another, so we charge one but consider the rest of both words (e.g., assume “s”
was typed for “k” and continue with “itten” and “itting”). This uses the following
helper function:

fun min3(a :: Number, b :: Number, c :: Number):
num-min(a, num-min(b, c))

end

This algorithm will indeed pass all the tests we have written above, but with a
problem: the running time grows exponentially. That is because, each time we find
a mismatch, we recur on three subproblems. In principle, therefore, the algorithm
takes time proportional to three to the power of the length of the shorter word. In
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practice, any prefix that matches causes no branching, so it is mismatches that incur
branching (thus, confirming that the distance of a word with itself is zero only takes
time linear in the size of the word).

Observe, however, that many of these subproblems are the same. For instance,
given “kitten” and “sitting”, the mismatch on the initial character will cause the
algorithm to compute the distance of “itten” from “itting” but also “itten” from
“sitting” and “kitten” from “itting”. Those latter two distance computations will
also involve matching “itten” against “itting”. Thus, again, we want the computa-
tion tree to turn into a DAG of expressions that are actually evaluated.

The solution, therefore, is naturally to memoize. First, we need a memoizer
that works over two arguments rather than one:

data MemoryCell2<T, U, V>:
| mem(in-1 :: T, in-2 :: U, out :: V)

end

fun memoize-2<T, U, V>(f :: (T, U -> V)) -> (T, U -> V):

var memory :: List<MemoryCell2<T, U, V>> = empty

lam(p, q):
answer = find(

lam(elt): (elt.in-1 == p) and (elt.in-2 == q) end,
memory)

cases (Option) answer block:
| none =>

result = f(p, q)
memory :=
link(mem(p, q, result), memory)
result

| some(v) => v.out
end

end
end

Most of the code is unchanged, except that we store two arguments rather than one,
and correspondingly look up both.

With this, we can redefine levenshtein to use memoization:
<levenshtein-memo> ::=

rec levenshtein :: (List<String>, List<String> -> Number) =
memoize-2(
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lam(s, t):
if is-empty(s) and is-empty(t): 0
else if is-empty(s): t.length()
else if is-empty(t): s.length()
else:

if s.first == t.first:
levenshtein(s.rest, t.rest)

else:
min3(

1 + levenshtein(s.rest, t),
1 + levenshtein(s, t.rest),
1 + levenshtein(s.rest, t.rest))

end
end

end)
where the argument to memoize-2 is precisely what we saw earlier as<levenshtein-
body> (and now you know why we defined levenshtein slightly oddly, not
using fun).

The complexity of this algorithm is still non-trivial. First, let’s introduce the
term suffix: the suffix of a string is the rest of the string starting from any point in
the string. (Thus “kitten”, “itten”, “ten”, “n”, and “” are all suffixes of “kitten”.)
Now, observe that in the worst case, starting with every suffix in the first word,
we may need to perform a comparison against every suffix in the second word.
Fortunately, for each of these suffixes we perform a constant computation relative
to the recursion. Therefore, the overall time complexity of computing the distance
between strings of length m and n is O([m,n→ m · n]). (We will return to space
consumption later [section 22.3.5].)

Exercise

Modify the above algorithm to produce an actual (optimal) sequence of edit
operations. This is sometimes known as the traceback.

22.3.3 Nature as a Fat-Fingered Typist

We have talked about how to address mistakes made by humans. However, humans
are not the only bad typists: nature is one, too!

When studying living matter we obtain sequences of amino acids and other
such chemicals that comprise molecules, such as DNA, that hold important and
potentially determinative information about the organism. These sequences consist
of similar fragments that we wish to identify because they represent relationships
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in the organism’s behavior or evolution. Unfortunately, these sequences are neverThis section may need to be
skipped in some states and
countries.

identical: like all low-level programmers, nature slips up and sometimes makes
mistakes in copying (called—wait for it—mutations). Therefore, looking for strict
equality would rule out too many sequences that are almost certainly equivalent.
Instead, we must perform an alignment step to find these equivalent sequences.
As you might have guessed, this process is very much a process of computing
an edit distance, and using some threshold to determine whether the edit is small
enough. This algorithm is named, after its creators, Smith-Waterman, and becauseTo be precise, we are

performing local sequence
alignment.

it is essentially identical, has the same complexity as the Levenshtein algorithm.
The only difference between traditional presentations of Levenshtein and Smith-

Waterman is something we alluded to earlier: why is every edit given a distance
of one? Instead, in the Smith-Waterman presentation, we assume that we have
a function that gives us the gap score, i.e., the value to assign every character’s
alignment, i.e., scores for both matches and edits, with scores driven by biologi-
cal considerations. Of course, as we have already noted, this need is not peculiar
to biology; we could just as well use a “gap score” to reflect the likelihood of a
substitution based on keyboard characteristics.

22.3.4 Dynamic Programming

We have used memoization as our canonical means of saving the values of past
computations to reuse later. There is another popular technique for doing this called
dynamic programming. This technique is closely related to memoization; indeed,
it can be viewed as the dual method for achieving the same end. First we will see
dynamic programming at work, then discuss how it differs from memoization.

Dynamic programming also proceeds by building up a memory of answers,
and looking them up instead of recomputing them. As such, it too is a process
for turning a computation’s shape from a tree to a DAG of actual calls. The key
difference is that instead of starting with the largest computation and recurring to
smaller ones, it starts with the smallest computations and builds outward to larger
ones.

We will revisit our previous examples in light of this approach.

Catalan Numbers with Dynamic Programming

To begin with, we need to define a data structure to hold answers. Following con-
vention, we will use an array.What happens when we run out

of space? We can use the
doubling technique we studied
for chapter 18.

MAX-CAT = 11

answers :: Array<Option<Number>> = array-of(none, MAX-CAT + 1)

http://en.wikipedia.org/wiki/Creation_and_evolution_in_public_education
http://en.wikipedia.org/wiki/Creation_and_evolution_in_public_education
http://en.wikipedia.org/wiki/Sequence_alignment
http://en.wikipedia.org/wiki/Sequence_alignment
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Then, the catalan function simply looks up the answer in this array:

fun catalan(n):
cases (Option) array-get-now(answers, n):
| none => raise("looking at uninitialized value")
| some(v) => v

end
end

But how do we fill the array? We initialize the one known value, and use the
formula to compute the rest in incremental order:

fun fill-catalan(upper):
array-set-now(answers, 0, some(1))
when upper > 0:

for map(n from range(1, upper + 1)):
block:

cat-at-n =
for fold(acc from 0, k from range(0, n)):
acc + (catalan(k) * catalan(n - 1 - k))

end
array-set-now(answers, n, some(cat-at-n))

end
end

end
end

fill-catalan(MAX-CAT)

The resulting program obeys the tests in <catalan-tests>.
Notice that we have had to undo the natural recursive definition—which pro-

ceeds from bigger values to smaller ones—to instead use a loop that goes from
smaller values to larger ones. In principle, the program has the danger that when
we apply catalan to some value, that index of answers will have not yet been
initialized, resultingin an error. In fact, however, we know that because we fill
all smaller indices in answers before computing the next larger one, we will
never actually encounter this error. Note that this requires careful reasoning about
our program, which we did not need to perform when using memoization because
there we made precisely the recursive call we needed, which either looked up the
value or computed it afresh.
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Levenshtein Distance and Dynamic Programming

Now let’s take on rewriting the Levenshtein distance computation:
<levenshtein-dp> ::=
fun levenshtein(s1 :: List<String>, s2 :: List<String>):
<levenshtein-dp/1>

end
We will use a table representing the edit distance for each prefix of each word.
That is, we will have a two-dimensional table with as many rows as the length of
s1 and as many columns as the length of s2. At each position, we will record the
edit distance for the prefixes of s1 and s2 up to the indices represented by that
position in the table.

Note that index arithmetic will be a constant burden: if a word is of length n, we
have to record the edit distance to its n+ 1 positions, the extra one corresponding
to the empty word. This will hold for both words:
<levenshtein-dp/1> ::=

s1-len = s1.length()
s2-len = s2.length()
answers = array2d(s1-len + 1, s2-len + 1, none)
<levenshtein-dp/2>

Observe that by creating answers inside levenshtein, we can determine the
exact size it needs to be based on the inputs, rather than having to over-allocate or
dynamically grow the array.

We have initialized the table with none, so we will get an error if we acci-
dentally try to use an uninitialized entry. It will therefore be convenient to createWhich proved to be necessary

when writing and debugging
this code!

helper functions that let us pretend the table contains only numbers:
<levenshtein-dp/2> ::=

fun put(s1-idx :: Number, s2-idx :: Number, n :: Number):
answers.set(s1-idx, s2-idx, some(n))

end
fun lookup(s1-idx :: Number, s2-idx :: Number) -> Number:

a = answers.get(s1-idx, s2-idx)
cases (Option) a:

| none => raise("looking at uninitialized value")
| some(v) => v

end
end
Now we have to populate the array. First, we initialize the row representing the

edit distances when s2 is empty, and the column where s1 is empty. At (0, 0), the
edit distance is zero; at every position thereafter, it is the distance of that position
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from zero, because that many characters must be added to one or deleted from the
other word for the two to coincide:
<levenshtein-dp/3> ::=

for each(s1i from range(0, s1-len + 1)):
put(s1i, 0, s1i)

end
for each(s2i from range(0, s2-len + 1)):
put(0, s2i, s2i)

end
<levenshtein-dp/4>
Now we finally get to the heart of the computation. We need to iterate over ev-

ery character in each word. these characters are at indices 0 to s1-len - 1 and
s2-len - 1, which are precisely the ranges of values produced by range(0, s1-len)
and range(0, s2-len).
<levenshtein-dp/4> ::=

for each(s1i from range(0, s1-len)):
for each(s2i from range(0, s2-len)):
<levenshtein-dp/compute-dist>
end

end
<levenshtein-dp/get-result>

Note that we’re building our way “out” from small cases to large ones, rather than
starting with the large input and working our way “down”, recursively, to small
ones.

Do Now!

Is this strictly true?

No, it isn’t. We did first fill in values for the “borders” of the table. This is
because doing so in the midst of <levenshtein-dp/compute-dist> would be much
more annoying. By initializing all the known values, we keep the core computation
cleaner. But it does mean the order in which we fill in the table is fairly complex.

Now, let’s return to computing the distance. For each pair of positions, we want
the edit distance between the pair of words up to and including those positions.
This distance is given by checking whether the characters at the pair of positions
are identical. If they are, then the distance is the same as it was for the previous
pair of prefixes; otherwise we have to try the three different kinds of edits:
<levenshtein-dp/compute-dist> ::=

dist =
if index(s1, s1i) == index(s2, s2i):
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lookup(s1i, s2i)
else:

min3(
1 + lookup(s1i, s2i + 1),
1 + lookup(s1i + 1, s2i),
1 + lookup(s1i, s2i))

end
put(s1i + 1, s2i + 1, dist)

As an aside, this sort of “off-by-one” coordinate arithmetic is traditional when
using tabular representations, because we write code in terms of elements that are
not inherently present, and therefore have to create a padded table to hold values
for the boundary conditions. The alternative would be to allow the table to begin
its addressing from -1 so that the main computation looks traditional.

At any rate, when this computation is done, the entire table has been filled with
values. We still have to read out the answer, with lies at the end of the table:
<levenshtein-dp/get-result> ::=

lookup(s1-len, s2-len)
Even putting aside the helper functions we wrote to satiate our paranoia about

using undefined values, we end up with:As of this writing, the current
version of the Wikipedia page
on the Levenshtein distance
features a dynamic
programming version that is
very similar to the code above.
By writing in pseudocode, it
avoids address arithmetic issues
(observe how the words are
indexed starting from 1 instead
of 0, which enables the body of
the code to look more
“normal”), and by initializing
all elements to zero it permits
subtle bugs because an
uninitialized table element is
indistinguishable from a
legitimate entry with edit
distance of zero. The page also
shows the recursive solution
and alludes to memoization, but
does not show it in code.

fun levenshtein(s1 :: List<String>, s2 :: List<String>):
s1-len = s1.length()
s2-len = s2.length()
answers = array2d(s1-len + 1, s2-len + 1, none)

for each(s1i from range(0, s1-len + 1)):
put(s1i, 0, s1i)

end
for each(s2i from range(0, s2-len + 1)):

put(0, s2i, s2i)
end

for each(s1i from range(0, s1-len)):
for each(s2i from range(0, s2-len)):

dist =
if index(s1, s1i) == index(s2, s2i):
lookup(s1i, s2i)

else:
min3(

1 + lookup(s1i, s2i + 1),

http://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=581406185#Iterative_with_full_matrix
http://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=581406185#Iterative_with_full_matrix
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=581406185#Recursive
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1 + lookup(s1i + 1, s2i),
1 + lookup(s1i, s2i))

end
put(s1i + 1, s2i + 1, dist)

end
end

lookup(s1-len, s2-len)
end

which is worth contrasting with the memoized version (<levenshtein-memo>). For more examples of canonical
dynamic programming
problems, see this page and
think about how each can be
expressed as a direct recursion.

22.3.5 Contrasting Memoization and Dynamic Programming

Now that we’ve seen two very different techniques for avoiding recomputation,
it’s worth contrasting them. The important thing to note is that memoization is a
much simpler technique: write the natural recursive definition; determine its space
complexity; decide whether this is problematic enough to warrant a space-time
trade-off; and if it is, apply memoization. The code remains clean, and subsequent
readers and maintainers will be grateful for that. In contrast, dynamic program-
ming requires a reorganization of the algorithm to work bottom-up, which can
often make the code harder to follow and full of subtle invariants about boundary
conditions and computation order.

That said, the dynamic programming solution can sometimes be more com-
putationally efficient. For instance, in the Levenshtein case, observe that at each
table element, we (at most) only ever use the ones that are from the previous row
and column. That means we never need to store the entire table; we can retain
just the fringe of the table, which reduces space to being proportional to the sum,
rather than product, of the length of the words. In a computational biology setting
(when using Smith-Waterman), for instance, this saving can be substantial. This
optimization is essentially impossible for memoization.

In more detail, here’s the contrast:
Memoization Dynamic Programming
Top-down Bottom-up
Depth-first Breadth-first
Black-box Requires code reorganization
All stored calls are necessary May do unnecessary computation
Cannot easily get rid of unnecessary data Can more easily get rid of unnecessary data
Can never accidentally use an uninitialized answer Can accidentally use an uninitialized answer
Needs to check for the presence of an answer Can be designed to not need to check for the presence of an answer

http://people.csail.mit.edu/bdean/6.046/dp/
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As this table should make clear, these are essentialy dual approaches. What is
perhaps left unstated in most dynamic programming descriptions is that it, too,
is predicated on the computation always producing the same answer for a given
input—i.e., being a pure function.

From a software design perspective, there are two more considerations.

First, the performance of a memoized solution can trail that of dynamic pro-
gramming when the memoized solution uses a generic data structure to store the
memo table, whereas a dynamic programming solution will invariably use a cus-
tom data structure (since the code needs to be rewritten against it anyway). There-
fore, before switching to dynamic programming for performance reasons, it makes
sense to try to create a custom memoizer for the problem: the same knowledge em-
bodied in the dynamic programming version can often be encoded in this custom
memoizer (e.g., using an array instead of list to improve access times). This way,
the program can enjoy speed comparable to that of dynamic programming while
retaining readability and maintainability.

Second, suppose space is an important consideration and the dynamic program-
ming version can make use of significantly less space. Then it does make sense to
employ dynamic programming instead. Does this mean the memoized version is
useless?

Do Now!

What do you think? Do we still have use for the memoized version?

Yes, of course we do! It can serve as an oracle [section 14.4] for the dynamic
programming version, since the two are supposed to produce identical answers
anyway—and the memoized version would be a much more efficient oracle than
the purely recursive implemenation, and can therefore be used to test the dynamic
programming version on much larger inputs.

In short, always first produce the memoized version. If you need more perfor-
mance, consider customizing the memoizer’s data structure. If you need to also
save space, and can arrive at a more space-efficient dynamic programming solu-
tion, then keep both versions around, using the former to test the latter (the person
who inherits your code and needs to alter it will thank you!).
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Exercise

We have characterized the fundamental difference between memoization and
dynamic programming as that between top-down, depth-first and bottom-up,
breadth-first computation. This should naturally raise the question, what
about:

• top-down, breadth-first

• bottom-up, depth-first

orders of computation. Do they also have special names that we just happen
to not know? Are they uninteresting? Or do they not get discussed for a
reason?
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Chapter 23

Processing Programs: Parsing

23.1 Understanding Languages by Writing Programs About
Them

We will understand the nature of languages by writing programs about them. These
programs will implement many interesting features of languages from different
perspectives, embodied in different actions:

• An interpreter will consume programs in a language and produce the an-
swers they are expected to produce.

• A type checker will consume programs in a language and produce either true
or false, depending on whether the program has consistent type annotations.

• A pretty-printer will consume programs in a language and print them, pret-
tified in some way.

• A verifier will consume programs in a language and check whether they
satisfy some stated property.

• A transformer will consume programs in a language and produce related but
different programs in the same language.

• A transformer’s first cousin, a compiler, will consume programs in a lan-
guage and produce related programs in a different language (which in turn
can be interpreted, type-checked, pretty-printed, verified, transformed, even
compiled...).

Observe that in each of these cases, we have to begin by consuming (the represen-
tation of) a program. We will briefly discuss how we do this quickly and easily, so
that in the rest of our study we can focus on the remainder of each of these actions.

289
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23.2 Everything (We Will Say) About Parsing

NParsing is a very general actvity whose difficulty depends both on how com-
plex or ambiguous the input might be, and how much stucture we expect of the
parser’s output. For our purposes, we would like the parser to be maximally help-
ful by providing later stages as much structure as possible. This forces us to either
write a very complex parser or limit the forms of legal input. We will choose the
latter.

A key problem of parsing is the management of ambiguity: when a given ex-
pression can be parsed in multiple different ways. For instance, the input
23 + 5 * 6
could parse in two different ways: either the multiplication should be done first
followed by addition, or vice versa. Though simple disambiguation rules (that you
probably remember from middle school) disambigiuate arithmetic, the problem is
much harder for full-fledged programming languages.

Ultimately, we would like to get rid of ambiguity once-and-for-all at the very
beginning of processing the program, rather than deal with it repeatedly in each
of the ways we might want to process it. Thus, if we follow the standard rules
of arithmetic, we would want the above program to turn into a tree that has a
(representation of) addition at its root, a (representation of) 23 as its left child,
multiplication as its right child, and so on. This is called an abstract syntax tree:
it is “abstract” because it represents the intent of the program rather than its literal
syntactic structure (spaces, indentation, etc.); it is “syntax” because it represents
the program that was given; and it is usually a “tree” but not always.

As we have said, we could push the problem of disambiguation onto a parser.
This is what most real languages do. Because parsing is not our concern, we are
instead going to ask the program’s author to use an unambiguous syntax. Indeed,

we can exploit the decades of work that has been invested intoNwire format to
represent programs. For instance, the above expression might be written—avoiding
the ambiguity induced by not properly parenthesizing the program—as:
<plus>

<args>
<arg position="1">

<number value="23"/>
</arg>
<arg position="2">

<mult>
<args>

<arg position="1">
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<number value="5"/>
</arg>
<arg position="2">

<number value="6"/>
</arg>

</args>
</mult>

</arg>
</args>

</plus>
in XML, or as
{plus:
[{number: "23"},
{mult:

[{number: "5"},
{number: "6"}]}]}

in JSON.

23.2.1 A Lightweight, Built-In First Half of a Parser

These are both worthy notations. Instead, we will use a related, and arguably even
simpler, wire format known as the s-expression: The name comes from Lisp.

(+ 23 (* 5 6))
Pyret has built-in support for processing s-expressions, so you can use this syntax
and get support from the language to process it.

Do Now!

Load the s-expression library with

import s-exp as S
and then try the following:

S.read-s-exp("(+ 23 (* 5 6))")
Make sure you understand the output it produced and why it produced that.

You should have seen the following output:

check:
S.read-s-exp("(+ 23 (* 5 6))") is

S.s-list([list:
S.s-sym("+"),
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S.s-num(23),
S.s-list([list:

S.s-sym("*"),
S.s-num(5),
S.s-num(6)])])

end

In this book we will use s-expressions to represent concrete syntax. This is
helpful because the syntax is so different from that of Pyret, we will virtually never
be confused as to what language we are reading. Since we will be writing pro-
grams to process programs, it is especially helpful to keep apart the program being
processed and that doing the processing. For us, the former will be written in
s-expressions and the latter in Pyret.

23.2.2 Completing the Parser

In principle, we can think of read-s-exp as a complete parser. However, its
output is generic: it represents the token structure without offering any comment on
its intent. We would instead prefer to have a representation that tells us something
about the intended meaning of the terms in our language, just as we wrote at the
very beginning: “(representation of) multiplication”, and so on.

To do this, first let’s import the necessary libraries:

import s-exp as S
import lists as L
Now down to business. We must first introduce a datatype that captures this repre-
sentation. We will separately discuss [section 24.1] how and why we obtained this
datatype, but for now let’s say it’s given to us:

data ArithC:
| numC(n :: Number)
| plusC(l :: ArithC, r :: ArithC)
| multC(l :: ArithC, r :: ArithC)

end

We then need a function that will convert s-expressions into instances of this datatype.
This is the other half of our parser:

fun parse(s :: S.S-Exp) -> ArithC:
cases (S.S-Exp) s:

| s-num(n) => numC(n)
| s-list(shadow s) =>
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cases (List) s:
| empty => raise("parse: unexpected empty list")
| link(op, args) =>

argL = L.get(args, 0)
argR = L.get(args, 1)
if op.s == "+":

plusC(parse(argL), parse(argR))
else if op.s == "*":

multC(parse(argL), parse(argR))
end

end
| else =>

raise("parse: not number or list")
end

end

This obeys the following tests: Note the use of a helper
function inside the block of
tests.check:

fun p(s): parse(S.read-s-exp(s)) end
p("3") is numC(3)
p("(+ 1 2)") is plusC(numC(1), numC(2))
p("(* (+ 1 2) (* 2 5))") is

multC(plusC(numC(1), numC(2)), multC(numC(2), numC(5)))
end

Congratulations! You have just completed your first representation of a pro-
gram. From now on we can focus entirely on programs represented as recursive
trees, ignoring the vagaries of surface syntax and how to get them into the tree
form (though in practice, we will continue to use the s-expression notation because
it’s easier to type than all those constructors). We’re finally ready to start studying
programming languages!

Exercise

If the test

p("3") is numC(3)
is instead written as

p(3) is numC(3)
what happens? Why?
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23.2.3 Coda

The s-expression syntax dates back to 1960. This syntax is often controversial“Recursive functions of
symbolic expressions and their
computation by machine, Part
I” by John McCarthy in
Communications of the ACM.

amongst programmers. Observe, however, something deeply valuable that it gives
us. While parsing traditional languages can be very complex, parsing this syntax
is virtually trivial. Given a sequence of tokens corresponding to the input, it is
absolutely straightforward to turn parenthesized sequences into s-expressions; it is
equally straightforward (as we see above) to turn s-expressions into proper syntax
trees. We like to call such two-level languages bicameral, in loose analogy toThe term is introduced in PLAI.

government legislative houses: the lower-level does rudimentary well-formedness
checking, while the upper-level does deeper validity checking.

The virtues of this syntax are thus manifold. The amount of code it requires
is small, and can easily be embedded in many contexts. By integrating the syn-
tax into the language, it becomes easy for programs to manipulate representations
of programs (as we will see more of in [section 24.4]. It’s therefore no surprise
that even though many Lisp-based languages—from Lisp 1.5 to Common Lisp to
Scheme to Racket to Clojure and more—have had wildly different semantics, they
all share this syntactic legacy.

Of course, we could just use XML instead. That might be much nicer. Or JSON.
Because that wouldn’t be anything like an s-expression at all.

https://www.plai.org/


Chapter 24

Processing Programs: A First
Look at Interpretation

Now we’re ready to write an evaluator—a program that turns programs into answers—
in the form of an interpreter, for our arithmetic language. We choose arithmetic The term “evaluate” means “to

reduce to a value”.first for three reasons: (a) you already know how it works, so we can focus on
the mechanics of writing evaluators; (b) it’s contained in every language we will
encounter later, so we can build upwards and outwards from it; and (c) it’s (sur-
prisingly) sophisticated enough to convey some important points.

24.1 Representing Arithmetic

Let’s first agree on how we will represent arithmetic expressions. Let’s say we
want to support only two operations—addition and multiplication—in addition to
primitive numbers. We need to represent arithmetic expressions. What are the rules
that govern the nesting of arithmetic expressions? We’re actually free to nest any
expression inside another.

Do Now!

Why did we not include division? What impact does it have on the remarks
above?

We’ve ignored division because it forces us into a discussion of what expressions
we might consider legal: clearly the representation of 1/2 ought to be legal; the
representation of 1/0 is much more debatable; and that of 1/(1-1) seems even
more controversial. We’d like to sidestep this controversy for now and return to it
later [chapter 28].
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Thus, we want a representation for numbers and arbitrarily nestable addition
and multiplication. Here’s one we can use:

data ArithC:
| numC(n :: Number)
| plusC(l :: ArithC, r :: ArithC)
| multC(l :: ArithC, r :: ArithC)

end

24.2 Writing an Interpreter

Now let’s write an interpreter for this arithmetic language. First, we should think
about what its type is. It clearly consumes a ArithC value. What does it pro-
duce? Well, an interpreter evaluates—and what kind of value might arithmetic
expressions reduce to? Numbers, of course. So the interpreter is going to be a
function from arithmetic expressions to numbers.

Exercise

Write your examples for the interpreter.

Because we have a recursive datatype, it is natural to structure our interpreter
as a recursive function over it. Here’s a first template:Templates are explained in

detail in How to Design
Programs. fun interp(e :: ArithC) -> Number:

cases (ArithC) e:
| numC(n) => ...
| plusC(l, r) => ...
| multC(l, r) => ...

end
end

You’re probably tempted to jump straight to code, which you can:

fun interp(e :: ArithC) -> Number:
cases (ArithC) e:

| numC(n) => n
| plusC(l, r) => l + r
| multC(l, r) => l * r

end
where:

interp(numC(3)) is 3
end

http://www.htdp.org/
http://www.htdp.org/


24.3. A FIRST TASTE OF “SEMANTICS” 297

which works just fine, passing its test.

Do Now!

Do you spot the errors?

Instead, let’s expand the template out a step:

fun interp(e :: ArithC) -> Number:
cases (ArithC) e:
| numC(n) => ...
| plusC(l, r) => ... interp(l) ... interp(r) ...
| multC(l, r) => ... interp(l) ... interp(r) ...

end
end

and now we can fill in the blanks:

fun interp(e :: ArithC) -> Number:
cases (ArithC) e:
| numC(n) => n
| plusC(l, r) => interp(l) + interp(r)
| multC(l, r) => interp(l) * interp(r)

end
end

Later on [section 26.3], we’re going to wish we had returned a more complex
datatype than just numbers. But for now, this will do.

Congratulations: you’ve written your first interpreter! We know, it’s very
nearly an anticlimax. But they’ll get harder—much harder—pretty soon, we promise.

24.3 A First Taste of “Semantics”

We just slipped something by you:

Do Now!

What is the “meaning” of addition and multiplication in this new language?

That’s a pretty abstract question, isn’t it. Let’s make it concrete. I’ll pose the
problem as follows.

Which of these is the same?

• 1 + 2
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• 1 + 2
• ’1’ + ’2’
• ’1’ + ’2’

What we’re driving at is that there are many kinds of addition in computer
science:

• First of all, there are many different kinds of numbers: fixed-width (e.g.,
32-bit) integers, signed fixed-width (e.g., 31-bits plus a sign-bit) integers,
arbitrary precision integers; in some languages, rationals; various formats
of fixed- and floating-point numbers; in some languages, complex numbers;
and so on. After the numbers have been chosen, addition may support only
some combinations of them.

• In addition, some languages permit the addition of datatypes such as matri-
ces.

• Furthermore, many languages support “addition” of strings (we use scare-
quotes because we don’t really mean the mathematical concept of addition,
but rather the operation performed by an operator with the syntax +). In some
languages this always means concatenation; in some others, it can result in
numeric results (or numbers stored in strings).

These are all different “meanings for addition”. Semantics is the mapping of syntax
(e.g., +) to meaning (e.g., some or all of the above).

Returning to our interpreter, what semantics do we have? We’ve adopted what-
ever semantics Pyret provides, because we map + to Pyret’s +. In fact that’s not
even quite true: Pyret may, for all we know, also enable + to apply to strings (which
in fact it does), so we’ve chosen the restriction of Pyret’s semantics to numbers.

Exercise

In what way have we restricted + to apply only to numbers? Where exactly
is this restriction?

If we wanted a different semantics, we’d have to implement it explicitly.

Exercise

What all would you have to change so that the number had signed 32-bit
arithmetic?

In general, we have to be careful about too readily borrowing from the host
language. However, because we have lots of interesting things to study already, we
will adopt Pyret’s numbers as our numbers for now.
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24.4 Desugaring: Growing the Language Without Enlarg-
ing It

We’ve picked a very restricted first language, so there are many ways we can grow
it. Some, such as representing data structures and functions, will clearly force us to
add new features to the interpreter itself. Others, such as adding more of arithmetic
itself, can possibly be done without disturbing the core language and hence its
interpreter: this is known as adding syntactic sugar, or “sugar” for short. Let’s
investigate.

24.4.1 Extension: Binary Subtraction

First, we’ll add subtraction. Because our language already has numbers, addition,
and multiplication, it’s easy to define subtraction: a− b = a+−1× b.

Okay, that was easy! But now we should turn this into concrete code. To
do so, we face a decision: where does this new subtraction operator reside? It
is tempting, and perhaps seems natural, to just add one more case to our existing
ArithC datatype.

Do Now!

What are the negative consequences of modifying ArithC?

This creates a few problems:

1. The first, obvious, one is that we now have to modify all programs that pro-
cess ArithC. So far that’s only our interpreter, which is pretty simple, but in
a more complex implementation, there could be many programs built around
the datatype—a type-checker, compiler, etc.—which must all be changed,
creating a heavy burden.

2. Second, we were trying to add new constructs that we can define in terms
of existing ones; it feels slightly self-defeating to do this in a way that isn’t
modular.

3. Third, and most subtly, there’s something conceptually unnecessary about
modifying ArithC. That’s because ArithC represents a perfectly good
core language. Atop this, we might want to include any number of additional
operations that make the user’s life more convenient, but there’s no need to
put these in the core. Rather, it’s wise to record conceptually different ideas
in distinct datatypes, rather than shoehorn them into one. The separation can
look a little unwieldy sometimes, but it makes the program much easier for
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future developers to read and maintain. Besides, for different purposes you
might want to layer on different extensions, and separating the core from the
surface enables that.

Therefore, we’ll define a new datatype to reflect our intended surface syntax terms:
<arith-dt> ::=

data ArithExt:
| numExt (n :: Number)
| plusExt (l :: ArithExt, r :: ArithExt)
| multExt (l :: ArithExt, r :: ArithExt)
| bminusExt (l :: ArithExt, r :: ArithExt)
<uminus-dt>

end
This looks almost exactly like ArithC, other than the added case, which fol-
lows the familiar recursive pattern. Note that the children of each node refer to
ArithExt, not ArithC.

Do Now!

What happens if the children are declared to be ArithC rather than ArithExt?

If we did this, then we would be able to use sugar only at the top-level, not in any
sub-expressions.

Given this datatype, we should do two things. First, we should modify our
parser to also parse - expressions, and always construct ArithExt terms (rather
than any ArithC ones). Second, we should implement a desugar function that
translates ArithExt values into ArithC ones.Desugaring is the act of

removing syntactic sugar. Let’s write the obvious part of desugar:
<main> ::=

fun desugar(s :: ArithExt) -> ArithC:
cases (ArithExt) s:

| numExt(n) => numC(n)
| plusExt(l, r) => plusC(desugar(l), desugar(r))
| multExt(l, r) => multC(desugar(l), desugar(r))
<bminus>
<uminus>

end
end

Now let’s convert the mathematical description of subtraction above into code:
<bminus> ::=



24.4. DESUGARING: GROWING THE LANGUAGE WITHOUT ENLARGING IT301

| bminusExt(l, r) =>
plusC(desugar(l), multC(numC(-1), desugar(r)))

Do Now!

It’s a common mistake to forget the recursive calls to desugar on l and r.
What happens when you forget them? Try for yourself and see.

24.4.2 Extension: Unary Negation

Now let’s consider another extension, which is a little more interesting: unary
negation. This forces you to do a little more work in the parser because, depending
on your surface syntax, you may need to look ahead to determine whether you’re
in the unary or binary case. But that’s not even the interesting part!

Exercise

Modify parse to handle unary subtraction.

There are many ways we can desugar unary negation. We can define it naturally
as −b = 0− b, or we could abstract over the desugaring of binary subtraction with
this expansion: −b = 0 +−1× b.

Do Now!

Which one do you prefer? Why?

It’s tempting to pick the first expansion, because it’s much simpler. Imagine
we’ve extended the ArithExt datatype with a representation of unary negation:
<uminus-dt> ::=

| uminusExt (e :: ArithExtU)
Now the implementation in desugar is straightforward:
<uminus> ::=

| uminusExt(e) => desugar(bminusExt(numExt(0), e))
Let’s make sure the types match up. Observe that e is a ArithExt term, so it
is valid to use as an argument to bminusExt, and the entire term can legally be
passed to desugar. It is therefore important to not desugar e but rather embed it
directly in the generated term. This embedding of an input term in another one and
recursively calling desugar is a common pattern in desugaring tools; it is called a
macro (specifically, the “macro” here is this definition of uminusExt).

However, there are two problems with the definition above:
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1. The first is that the recursion is generative, which forces us to take extra care.If you haven’t heard of
generative recursion before,
read the section on it in How to
Design Programs. Essentially,
in generative recursion the
sub-problem is a computed
function of the input, rather
than a structural piece of it.
This is an especially simple
case of generative recursion,
because the “function” is
simple: it’s just the
bminusExt constructor.

We might be tempted to fix this by using a different rewrite:

<uminus/alt> ::=

| uminusExt(e) => bminusExt(numExt(0), desugar(e))
which does indeed eliminate the generativity.

Do Now!

Unfortunately, this desugaring transformation won’t work at all! Do
you see why? If you don’t, try to run it.

2. The second is that we are implicitly depending on exactly what bminusExt
means; if its meaning changes, so will that of uminusExt, even if we don’t
want it to. In contrast, defining a functional abstraction that consumes two
terms and generates one representing the addition of the first to -1 times the
second, and using this to define the desugaring of both uminusExt and
bminusExt, is a little more fault-tolerant.

You might say that the meaning of subtraction is never going to change, so
why bother? Yes and no. Yes, it’s meaning is unlikely to change; but no,
its implementation might. For instance, the developer may decide to log all
uses of binary subtraction. In the first expansion all uses of unary negation
would also get logged, but they would not in the second expansion.

Fortunately, in this particular case we have a much simpler option, which is
to define −b = −1 × b. This expansion works with the primitives we have, and
follows structural recursion. The reason we took the above detour, however, is to
alert you to these problems, and warn that you might not always be so fortunate.

24.5 A Three-Stage Pipeline

This concludes our first look at the standard pipeline we’re going to use. We will
first parse programs to convert them to abstract syntax; we will then desugar them
to eliminate unnecessary constructs. From now on, we will usually focus just on
the resulting core language, which will be subject to not only interpretation but also
type-checking and other actions.

http://www.htdp.org/
http://www.htdp.org/
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Interpreting Conditionals

Now that we have the first stirrings of a programming language, let’s grow it out
a little. The heart of a programming language consists of control—the ability to
order executed instructions—and data—the representations of information con-
sumed and produced by programs. We will therefore add both control and data
to our language, through a simple and important kind: conditionals. Though this
seems (and is) a very simple concept, it will force us to tackle several design is-
sues in both the language and the interpreter’s pipeline, and is thus surprisingly
illuminating.

25.1 The Design Space of Conditionals

Even the simplest conditional exposes us to many variations in language design.
Consider one of the form:
(if test-exp then-part else-part)
The intent is that test-exp is evaluated first; if it results in a true value then
(only) then-part is evaluated, else (only) else-part is evaluated. (We usu-
ally refer to these two parts as branches, since the program’s control must take one
or the other.) However, even this simple construct results in at least three different,
mostly independent design decisions:

1. What kind of values can the test-exp be? In some languages they must be
Boolean values (two values, one representing truth and the other falsehood).
In other languages this expression can evaluate to just about any value, with
some set—colloquially called truthy—representing truth (i.e., they result in
execution of the then-part) while the remaining ones are falsy, meaning
they cause else-part to run.

303
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Initially, it may seem attractive to design a language with several truthy and
falsy values: after all, this appears to give the programmer more conve-
nience, permitting non-Boolean-valued functions and expressions to be used
in conditionals. However, this can lead to bewildering inconsistencies across
languages:

Value JS Perl PHP Python Ruby
0 falsy falsy falsy falsy truthy
"" falsy falsy falsy falsy truthy
NaN falsy truthy truthy truthy truthy
nil/null/None/undef falsy falsy falsy falsy falsy
"0" truthy falsy falsy truthy truthy
-1 truthy truthy truthy truthy truthy
[] truthy truthy falsy falsy truthy
empty map/object truthy falsy falsy falsy truthy

Of course, it need not be so complex. Scheme, for instance, has only one
value that is falsy: false itself (written as #f). Every other value is truthy.
For those who value allowing non-Boolean values in conditionals, this rep-
resents an elegant trade-off: it means a function need not worry that a type-
consistent value resulting from a computation might cause a conditional to
reverse itself. (For instance, if a function returns strings, it need not worry
that the empty string might be treated differently from every other string.)While writing this chapter, I

stumbled on a strange bug in
Pyret: all numeric s-expressions
parsed as s-num values except
0, which parsed as a s-sym.
Eventually Justin Pombrio
reported: “It’s a silly bug with a
if in JavaScript that’s getting
0 and thinking it’s false.”

Note that Ruby and Lua have relatively few falsy values; it may not be coin-
cidental that their creators were deeply influenced by Scheme.

2. What kind of terms are the branches? Some languages make a distinction
between statements and expressions; in such languages, designers need to
decide which of these are permitted. In some languages, there are even two
syntactic forms of conditional to reflect these two choices: e.g., in C, if
uses statements (and does not return any value) while the “ternary operator”
((...?...:...)) permits expressions and returns a value.

3. If the branches are expressions and hence allowed to evaluate to values, how
do the values relate? Many (but not all) languages with static type systems
expect the two branches to have the same type [section 27.3]. Languages
without static type systems usually place no restrictions.

For now, we will assume that the conditional expression can only be a Boolean
value; the branches are expressions (because that is all we have in our language
anyway); and the two branches can return values of different types.
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25.2 The Game Plan for Conditionals

To add conditionals to the language, we have to cover a surprising amount of
ground:

• First, we need to define syntax. We’ll use

true
false
(if test-exp then-exp else-exp)
to represent the two Boolean constants and the conditional expression.

• We need to modify the representation of programs to handle these new con-
structs. Here’s our new expression language (with the name adjusted to sig-
nal its growth beyond pure arithmetic):

data ExprC:
| trueC
| falseC
| numC(n :: Number)
| plusC(l :: ExprC, r :: ExprC)
| multC(l :: ExprC, r :: ExprC)
| ifC(c :: ExprC, t :: ExprC, e :: ExprC)

end

We need to adjust the pre-desugaring language (ExprExt) as well to ac-
count for the new constructs.

• We need to modify the parser and desugarer.

Exercise

Modify parse and desugar to work with the extended language.
Adjust the datatypes as needed. Be sure to write tests.

Do Now!

There’s one more big change needed. Do you see what it is?
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25.2.1 The Interpreter’s Type

If our terms are no longer purely arithmetic in nature, then we can no longer expect
our interpreter to produce only numeric answers! For instance, what should be the
result of evaluating the following program:

trueC
(that is, the program corresponding to the source text true)?

Beware: what I’ve presented you with is actually a test of your character! You“A lesser man might have
wavered that day in the hospital
corridor, a weaker man might
have compromised on such
excellent substitutes as Drum
Major, Minor Major, Sergeant
Major, or C. Sharp Major, but
Major Major’s father had
waited fourteen years for just
such an opportunity, and he was
not a person to waste
it.”—Joseph Heller

might be sorely tempted to decide that true should evaluate to 1 (and, for good
measure, that false should evaluate to 0). What are the consequences of this?

• It precludes being able to have a language with pure Booleans. This will
have consequences when we get to types [chapter 27].

• It means you can perform arithmetic on truth values. This might not sound
so surprising: after all, conjunction (and) and disjunction (or) can, after all,
be thought in terms of arithmetic. But once you you say truth values are
numbers, you can no longer detect if a programmer accidentally subtracts
one truth value from another, divides them, and so on.

• It isn’t even clear which numbers should represent which truth values. His-
torically, some languages have made zero represent truth; others have even
chosen to use non-negative numbers for truth and negative numbers for fal-
sity. None of these choices is more clearly “correct” than other ones, which
suggests we’re really just guessing our way around here.

• Most of all, we can’t keep hacking our way out of this situation. How are we
going to represent strings or lists? With Gödel numbering? What happens
when we get to functions, coroutines, continuations?

In short, avoid encoding! There’s no good reason to make numbers do double-
duty: let Booleans be their own type. In any respectable implementation this will
impose little to no additional cost to program execution, while greatly reducing
programmer confusion.

The consequence of this decision is that we will need a way to represent all theOf course, you’re welcome to
experiment with different
decisions. The beauty of
writing little interpreters is you
can change what you want and
explore the consequences of
those changes.

possible outcomes from the interpreter.

Do Now!

Try to sketch a representation for yourself.

Here’s a reasonable one:

https://en.wikipedia.org/wiki/G%C3%B6del_numbering
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data Value:
| numV(n :: Number)
| boolV(b :: Boolean)

end
For now, this is naturally a quite shallow representation: it simply helps us tell
numbers and Booleans apart. Later, we will add values that have much more inter-
esting structure.

25.2.2 Updating Arithmetic

Finally, we’re ready to augment our interpreter. We can ignore the arithmetic lines,
which should be unchanged (because we haven’t changed anything about how we
will perform arithmetic), and focus on the new parts of the language.

Do Now!

Right?

Wrong. Because we’ve changed the type of value the interpreter produces, we
have to update the rules for arithmetic, too, to reflect that. We can do this quickly,
but we’ll do it in a few steps to illustrate a point.

First, we’ll handle the easy case:
<ext-arith-cond-interp> ::=

fun interp(e :: ExprC) -> Value:
cases (ExprC) e:

| numC(n) => numV(n)
<ext-arith-cond-arith-cases>
<ext-arith-cond-bool-cases>

end
end

Now let’s consider addition and multiplication. We could do it directly:

| plusC(l, r) =>
numV(interp(l).n + interp(r).n)

but this will get repetitive: calling interp on each branch, dereferencing the
numeric field, and wrapping the answer in numV. It would be better to abstract
over this so we don’t have to repeat code.

25.2.3 Defensive Programming

Actually, there is a more serious problem lurking in the above code. It’s in this
expression:
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interp(l).n
(and in the other, similar one). First, it blindly refers to the n field irrespective of
whether the resulting value actually represents a number; if some other variant also
had a field of this name, this would silently succeed! Therefore, we really ought
to make sure that the recursive call to interp really does return a number; and
now the logic is clearly getting more complicated than we would like to do in-line.
Instead, we’ll define a helper function that takes the operation to perform and does
everything else:

fun arith-binop(op :: (Number, Number -> Number),
l :: ExprC,
r :: ExprC) -> Value:

l-v = interp(l)
r-v = interp(r)
if is-numV(l-v) and is-numV(r-v):

numV(op(l-v.n, r-v.n))
else:

raise(’argument not a number’)
end

end
With this, we can now show the revised definitions of the arithmetic operations:
<ext-arith-cond-arith-cases> ::=

| plusC(l, r) => arith-binop(lam(x, y): x + y end, l, r)
| multC(l, r) => arith-binop(lam(x, y): x * y end, l, r)

Do Now!

Before we move on, let’s ponder one more question. Suppose we could be
certain that no other variant would have a field named n. Then, is there any
difference between the version that checks is-numV for each of the values
and the version that does not?

Seemingly, the answer is no: if there is no n field, the version that accesses
n will halt with an error signaled by Pyret, just as arith-binop would have
stopped it. However, there is an important philosophical difference between the
two versions:

• The version that performs a check in arith-binop is providing the error
at the level of the language being implemented. It does not depend on Pyret
to perform any checks; furthermore, it can give an error in terms of the inter-
preted language, using terminology that makes sense to the programmer in
that language.
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• In contrast, the version that delegates the check to Pyret is allowing a meta-
error to percolate through. This requires being very certain of how Pyret
works, whether it will perform the check at the right time and in the right
place, and then halt program execution in the appropriate way. Furthermore,
the error message it produces might make no sense to the programmer: Pyret
might say “Field n not found”, but to a person using a language with only
arithmetic and conditionals, the very term “field” might mean nothing.

Thus, in a production system, we should be sure to catch errors in our implementa-
tion, not hope that the implementing language will do the right thing. In this study,
however, we will sometimes be loose about this, to keep the code simpler and more
readable.

25.2.4 Interpreting Conditionals

Finally, we are ready to handle the actual point of this exercise: conditionals. The
two constants are easy:
<ext-arith-cond-bool-cases> ::=

| trueC => boolV(true)
| falseC => boolV(false)
<ext-arith-cond-bool-if>

The conditional expression is not actually hard; it just forces us to think. This is Thinking, after all, rather being
the point of this entire study.where we encode truthy/falsy distinctions; indeed, one could arguably have three

possibilities: true values, false values, and other values! (A third possibility here
is tantamount to having an equality operator returning anything other than true and
false values. Though highly unusual, it is neither impossible nor nonexistent: in
fact, Pyret does this [section 21.6.3]!) However, because we’ve decided that we
will only handle Boolean values, and there are only two kinds of these (not least
because we’ve chosen to represent them using Pyret’s Booleans), this becomes
quite simple:
<ext-arith-cond-bool-if> ::=

| ifC(cnd, thn, els) =>
ic = interp(cnd)
if is-boolV(ic):

if ic.b:
interp(thn)

else:
interp(els)

end
else:
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raise('not a boolean')
end

And that’s it. Now we have a complete, working interpreter for conditionals.

25.3 Growing the Conditional Language

To create a truly useful language of conditionals, however, we need at least two
more things:

1. A way to compute Boolean values, not just write them as constants. For in-
stance, we should add operations on numbers (such as numeric comparison).
This is relatively easy, especially given that we already have arith-binop
parameterized over the operation to perform and returning a Value (rather
than a number). The bigger nuisance is pushing this through parsing and
desugaring. It would instead be better to create generic unary and binary
operations and look them up in a table.

2. It would also be useful to have a way to combine conditionals (negation,
disjunction, conjunction).

Exercise

Generalize the parser and desugarer to look up a table of unary and binary
operations and represent them uniformly, instead of having a different variant
for each one.

Negation is straightforward: it’s just a unary function. However, in a program-
ming language, disjunction (or) and conjunction (and) should not be thought of as
functions. For instance, in Scheme, it is common to write:
(and (not (= x 0)) (/ 1 x))
If both (not (= x 0)) and (/ 1 x) were treated as arguments and evalu-
ated right away, then the very situation we’re trying to protect against—division by
zero—would occur right away. Therefore, it is better to think of these are desugar-Of course, this is not a problem

in a lazy language [REF]. ing into cascading conditionals: for instance, one possible desugaring for the above
expression might be
(if (not (= x 0))

false
(/ 1 0))

Exercise

Implement negation, conjunction, and disjunction.
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Exercise

Define a multi-armed conditional expression that desugars into nested ifs.
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Chapter 26

Interpreting Functions

26.1 Adding Functions to the Language

Now that we have basic expressions and conditionals, let’s grow to have a complete
programming languageby adding functions.

26.1.1 Defining Data Representations

Imagine we’re modeling a simple programming environment. The developer de-
fines functions in a definitions window, and uses them in an interactions window For historic reasons, the

interactions window is also
called a REPL or
“read-eval-print loop”.

(which provides a prompt at which they can run expressions). For now, let’s as-
sume all definitions go in the definitions window only (we’ll relax this soon: sec-
tion 26.3), and all stand-alone expressions in the interactions window only. Thus,
running a program simply loads definitions. Our interpreter will correspond to the
interactions window prompt and assume it has been supplied with a set of defini-
tions. A set of definitions suggests no

ordering, which means,
presumably, any definition can
refer to any other. That’s what
we intend here, but when you
are designing your own
language, be sure to think about
this.

To keep things simple, let’s just consider functions of one argument. Here are
some Pyret examples:

fun double(x): x + x end

fun quad(x): double(double(x)) end

fun const5(_): 5 end

Exercise

When a function has multiple arguments, what simple but important criterion
governs the names of those arguments?

313
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What are the parts of a function definition? It has a name (above, double,
quad, and const5), which we’ll represent as a string ("double", etc.); its
formal parameter or argument has a name (e.g., x), which too we can model as
a string ("x"); and it has a body. We’ll determine the body’s representation in
stages, but let’s start to lay out a datatype for function definitions:

data FunDefC:
| fdC(name :: String, arg :: String, body :: ExprC)

end

What is the body? Clearly, it has the form of an arithmetic expression, and
sometimes it can even be represented using the existing ArithC language: for
instance, the body of const5 can be represented as numC(5). But representing
the body of double requires something more: not just addition (which we have),
but also “x”. You are probably used to calling this a variable, but we will not use
that term for now. Instead, we will call it an identifier.We’ve discussed this

terminological difference in
section 21.4. Do Now!

Anything else?

Finally, let’s look at the body of quad. It has yet another new construct: a
function application. Be very careful to distinguish between a function definition,
which describes what the function is, and an application, which uses it. The argu-
ment (or actual parameter) in the inner application of double is x; the argument
in the outer application is double(x). Thus, the argument can be any complex
expression.

Let’s commit all this to a crisp datatype. Clearly we’re extending what we
had before (because we still want all of arithmetic). We’ll give a new name to our
datatype to signify that it’s growing up:
<datatype> ::=

data ExprC:
| numC(n :: Number)
| plusC(l :: ExprC, r :: ExprC)
| multC(l :: ExprC, r :: ExprC)
| trueC
| falseC
| ifC(c :: ExprC, t :: ExprC, e :: ExprC)
| <appC-dt>
| <idC-dt>

end
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Identifiers are closely related to formal parameters. When we apply a func-
tion by giving it a value for its parameter, we are in effect asking it to replace all
instances of that formal parameter in the body—i.e., the identifiers with the same
name as the formal parameter—with that value. To simplify this process of search- Observe that we are being coy

about a few issues: what kind of
“value” and when to replace
[REF].

and-replace, we might as well use the same datatype to represent both. We’ve
already chosen strings to represent formal parameters, so:
<idC-dt> ::=

| idC(s :: String)
Finally, applications. They have two parts: the function’s name, and its argu-

ment. We’ve already agreed that the argument can be any full-fledged expression
(including identifiers and other applications). As for the function name, it again
makes sense to use the same datatype as we did when giving the function its name
in a function definition. Thus:
<appC-dt> ::=

| appC(f :: String, a :: ExprC)
identifying which function to apply, and providing its argument.

Using these definitions, it’s instructive to write out the representations of the
examples we defined above:

• fdC("double", "x", plusC(idC("x"), idC("x")))

• fdC("quad", "x", appC("double", appC("double", idC("x"))))

• fdC("const5", "_", numC(5))
We also need to choose a representation for a set of function definitions. It’s con-
venient to represent these by a list. Look out! Did you notice that

we spoke of a set of function
definitions, but chose a list
representation? That means
we’re using an ordered
collection of data to represent
an unordered entity. At the very
least, then, when testing, we
should use any and all
permutations of definitions to
ensure we haven’t subtly built
in a dependence on the order.

Exercise

Extend desugar with support for identifiers and applications.

26.1.2 Growing the Interpreter

Now we’re ready to tackle the interpreter proper. First, let’s remind ourselves of
what it needs to consume. Previously, it consumed only an expression to evaluate.
Now it also needs to take a list of function definitions:
<fof-interp> ::=
fun interp(e :: ExprC, fds :: List<FunDefC>) -> Value:
cases (ExprC) e:
<fof-interp-body>

end
end
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Let’s revisit our old interpreter. In the case of numbers, clearly we still return
the number as the answer. In the addition and multiplication case, we still need to
recur (because the sub-expressions might be complex), but which set of function
definitions do we use? Because the act of evaluating an expression neither adds nor
removes function definitions, the set of definitions remains the same, and should
just be passed along unchanged in the recursive calls. Similarly for conditionals.
<fof-interp-body> ::=

| numC(n) => numV(n)
| plusC(l, r) => arith-binop(lam(x, y): x + y end, l, r, fds)
| multC(l, r) => arith-binop(lam(x, y): x * y end, l, r, fds)
| trueC => boolV(true)
| falseC => boolV(false)
| ifC(cnd, thn, els) =>

ic = interp(cnd, fds)
if is-boolV(ic):

if ic.b:
interp(thn, fds)

else:
interp(els, fds)

end
else:

raise('not a boolean')
end

<fof-interp-idC>
<fof-interp-appC>

Exercise

Modify arith-binop to pass along fds unchanged in recursive calls.

Now let’s tackle application. First we have to look up the function definition,
for which we’ll assume we have a helper function of this type available:
<get-fundef> ::=

fun get-fundef(name :: String, fds :: List<FunDefC>)
-> FunDefC:

<get-fundef-body>
end

Assuming we find a function of the given name, we need to evaluate its body. How-
ever, remember what we said about identifiers and parameters? We must “search-
and-replace”, a process you have seen before in school algebra called substitution.
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This is sufficiently important that we should talk first about substitution before
returning to the interpreter [section 26.1.4].

26.1.3 Substitution

Substitution is the act of replacing a name (in this case, that of the formal parame-
ter) in an expression (in this case, the body of the function) with another expression
(in this case, the actual parameter). Its header is:
<subst> ::=

fun subst(w :: ExprC, at :: String, in :: ExprC) -> ExprC:
<subst-body>

end
The first argument is what we want to replace the name with; the second is at what
name we want to perform substitution; and the third is in which expression we
want to do it.

Do Now!

Suppose we want to substitute 3 for the identifier x in the bodies of the three
example functions above. What should it produce?

In double, this should produce 3 + 3; in quad, it should produce double(double(3));
and in const5, it should produce 5 (i.e., no substitution happens because there
are no instances of x in the body). A common mistake is to assume

that the result of substituting,
e.g., 3 for x in double is
fun double(x): 3 + 3 end.
This is incorrect. We only
substitute at the point when we
apply the function, at which
point the function’s invocation
is replaced by its body. The
header enables us to find the
function and ascertain the name
of its parameter; but only its
body participates in evaluation.
Examine the use of substitution
in the interpreter to see how
returning a function definition
would result in a type error.

These examples already tell us what to do in almost all the cases. Given a
number, there’s nothing to substitute. If it’s an identifier, we have to to replace the
identifier if it’s the one we’re trying to substitute, otherwise leave it alone. In the
other cases, descend into the sub-expressions, performing substitution.

Before we turn this into code, there’s an important case to consider. Suppose
the name we are substituting happens to be the name of a function. Then what
should happen?

Do Now!

What, indeed, should happen?

There are many ways to approach this question. One is from a design per-
spective: function names live in their own “world”, distinct from ordinary program
identifiers. Some languages (such as C and Common Lisp, in slightly different
ways) take this perspective, and partition identifiers into different namespaces de-
pending on how they are used. In other languages, there is no such distinction;
indeed, we will examine such languages soon [section 26.3].
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For now, we will take a pragmatic viewpoint. If we evaluate a function name,
it would result in a number or Boolean. However, these cannot name functions.
Therefore, it makes no sense to substitute in that position, and we should leave
the function name unmolested irrespective of its relationship to the variable being
substituted. (Thus, a function could have a parameter named x as well as refer to
another function called x, and these would be kept distinct.)

Now we’ve made all our decisions, and we can provide the body:
<subst-body> ::=

cases (ExprC) in:
| numC(n) => in
| plusC(l, r) => plusC(subst(w, at, l), subst(w, at, r))
| multC(l, r) => multC(subst(w, at, l), subst(w, at, r))
| trueC => trueC
| falseC => falseC
| ifC(cnd, thn, els) =>

ifC(subst(w, at, cnd), subst(w, at, thn), subst(w, at, els))
| appC(f, a) => appC(f, subst(w, at, a))
| idC(s) =>

if s == at:
w

else:
in

end
end
Exercise

Observe that, whereas in the numC case the interpreter returned numV(n),
substitution returns in (i.e., the original expression, equivalent at that point
to writing numC(n)). Why?

26.1.4 The Interpreter, Resumed

Phew! Now that we’ve completed the definition of substitution (or so we think),
let’s complete the interpreter. Substitution was a heavyweight step, but it also does
much of the work involved in applying a function. It is tempting to write
<fof-interp-appC/alt> ::=

| appC(f, a) =>
fd = get-fundef(f, fds)
subst(a, fd.arg, fd.body)

Tempting, but wrong.
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Do Now!

Do you see why?

Reason from the types. What does the interpreter return? Values. What does
substitution return? Oh, that’s right, expressions! For instance, when we substi-
tuted in the body of double, we got back the representation of 5 + 5. This is
not a valid answer for the interpreter. Instead, it must be reduced to an answer.
That, of course, is precisely what the interpreter does:
<fof-interp-appC> ::=

| appC(f, a) =>
fd = get-fundef(f, fds)
interp(subst(a, fd.arg, fd.body), fds)

Okay, that leaves only one case: identifiers. What could possibly be compli-
cated about them? They should be just about as simple as numbers! And yet we’ve
put them off to the very end, suggesting something subtle or complex is afoot.

Do Now!

Work through some examples to understand what the interpreter should do in
the identifier case.

Let’s suppose we had defined double as follows:

fun double(x): x + y end

When we substitute 5 for x, this produces the expression 5 + y. So far so
good, but what is left to substitute y? As a matter of fact, it should be clear from
the very outset that this definition of double is erroneous. The identifier y is said
to be free, an adjective that in this setting has negative connotations.

In other words, the interpreter should never confront an identifier. All identi-
fiers ought to be parameters that have already been substituted (known as bound
identifiers—here, a positive connotation) before the interpreter ever sees them. As
a result, there is only one possible response given an identifier:
<fof-interp-idC> ::=
| idC(s) => raise("unbound identifier")
And that’s it!
Finally, to complete our interpreter, we should define get-fundef:

<get-fundef-body> ::=
cases (List<FunDefC>) fds:

| empty => raise("couldn't find function")
| link(f, r) =>
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if f.name == name:
f

else:
get-fundef(name, r)

end
end

26.1.5 Oh Wait, There’s More!

Earlier, we declared subst as:

fun subst(w :: ExprC, at :: String, in :: ExprC) -> ExprC:
...

end
Sticking to surface syntax for brevity, suppose we apply double to 1 + 2.

This would substitute 1 + 2 for each x, resulting in the following expression—
(1 + 2) + (1 + 2)—for interpretation. Is this necessarily what we want?

When you learned algebra in school, you may have been taught to do this
differently: first reduce the argument to an answer (in this case, 3), then substitute
the answer for the parameter. This notion of substitution might have the following
type instead:

fun subst(w :: Value, at :: String, in :: ExprC) -> ExprC:
...

end
In fact, we don’t even have
substitution quite right! The
version of substitution we have
doesn’t scale past this language
due to a subtle problem known
as “name capture”. Fixing
substitution is complex, subtle,
and an exciting intellectual
endeavor, but it’s not the
direction we want to go in here.
We’ll instead sidestep this
problem in this book. If you’re
interested, however, read about
the lambda calculus [CITE],
which provides the tools for
defining substitution correctly.

Exercise

Modify your interpreter to substitute names with answers, not expressions.

We’ve actually stumbled on a profound distinction in programming languages.
The act of evaluating arguments before substituting them in functions is called
eager application, while that of deferring evaluation is called lazy—and has some
variations. For now, we will actually prefer the eager semantics, because this is
what most mainstream languages adopt. Later [REF], we will return to talking
about the lazy application semantics and its implications.

26.2 From Substitution to Environments

Though we have a working definition of functions, you may feel a slight unease
about it. When the interpreter sees an identifier, you might have had a sense that it
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needs to “look it up”. Not only did it not look up anything, we defined its behavior
to be an error! While absolutely correct, this is also a little surprising. More
importantly, we write interpreters to understand and explain languages, and this
implementation might strike you as not doing that, because it doesn’t match our
intuition.

There’s another difficulty with using substitution, which is the number of times
we traverse the source program. It would be nice to have to traverse only those parts
of the program that are actually evaluated, and then, only when necessary. But sub-
stitution traverses everything—unvisited branches of conditionals, for instance—
and forces the program to be traversed once for substitution and once again for
interpretation.

Exercise

Does substitution have implications for the time complexity of evaluation?

There’s yet another problem with substitution, which is that it is defined in
terms of representations of the program source. Obviously, our interpreter has and
needs access to the source, to interpret it. However, other implementations—such
as compilers—have no need to store it for that purpose. It would be nice to employ Compilers might store versions

of or information about the
source for other reasons, such
as reporting runtime errors, and
JITs may need it to re-compile
on demand.

a mechanism that is more portable across implementation strategies.

26.2.1 Introducing the Environment

The intuition that addresses the first concern is to have the interpreter “look up” an
identifier in some sort of directory. The intuition that addresses the second concern
is to defer the substitution. Fortunately, these converge nicely in a way that also
addresses the third. The directory records the intent to substitute, without actu-
ally rewriting the program source; by recording the intent, rather than substituting
immediately, we can defer substitution; and the resulting data structure, which is
called an environment, avoids the need for source-to-source rewriting and maps
nicely to low-level machine representations. Each name association in the environ-
ment is called a binding. This does not mean our study of

substitution was useless; to the
contrary, many tools that work
over programs—such as
compilers and analyzers—use
substitution. Just not for the
purpose of evaluating it at
run-time.

Observe carefully that what we are changing is the implementation strategy
for the programming language, not the language itself. Therefore, none of our
datatypes for representing programs should change, neither—and this is the critical
part—should the answers that the interpreter provides. As a result, we should think
of the previous interpreter as a “reference implementation” that the one we’re about
to write should match. Indeed, we should create a generator that creates lots of
tests, runs them through both interpreters, and makes sure their answers are the
same: i.e., the previous implementation is an oracle [section 14.4]. Ideally, we
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should prove that the two interpreters behave the same, which is a good topic for
advanced study.One subtlety is in defining

precisely what “the same”
means, especially with regards
to failure.

Let’s first define our environment data structure. An environment is a collection
of names associated with...what?

Do Now!

A natural question to ask here might be what the environment maps names
to. But a better, more fundamental, question is: How to determine the answer
to the “natural” question?

Remember that our environment was created to defer substitutions. Therefore,
the answer lies in substitution. We discussed earlier [section 26.1.5] that we want
substitution to map names to answers, corresponding to an eager function applica-
tion strategy. Therefore, the environment should map names to answers.

data Binding:
| bind(name :: String, value :: Value)

end

type Environment = List<Binding>
mt-env = empty
xtnd-env = link

26.2.2 Interpreting with Environments

Now we can tackle the interpreter. One case is easy, but we should revisit all the
others:

<fof-env-interp> ::=
fun interp(e :: ExprC, nv :: Environment, fds :: List<FunDefC>) -> Value:

cases (ExprC) e:
<fof-env-interp-arith>
<fof-env-interp-cond>
<fof-env-interp-idC>
<fof-env-interp-appC>

end
end
The arithmetic operations are easiest. Recall that before, the interpreter re-

curred without performing any new substitutions. As a result, there are no new
deferred substitutions to perform either, which means the environment does not
change:
<fof-env-interp-arith> ::=
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| numC(n) => numV(n)
| plusC(l, r) => arith-binop(lam(x, y): x + y end, l, r, nv, fds)
| multC(l, r) => arith-binop(lam(x, y): x * y end, l, r, nv, fds)

Conditionals are similarly straightforward:
<fof-env-interp-cond> ::=
| trueC => boolV(true)
| falseC => boolV(false)
| ifC(cnd, thn, els) =>
ic = interp(cnd, nv, fds)
if is-boolV(ic):

if ic.b:
interp(thn, nv, fds)

else:
interp(els, nv, fds)

end
else:

raise('not a boolean')
end

Now let’s handle identifiers. Clearly, encountering an identifier is no longer an
error: this was the very motivation for this change. Instead, we must look up its
value in the directory:
<fof-env-interp-idC> ::=
| idC(s) => lookup(s, nv)

Do Now!

Implement lookup.

Finally, application. Observe that in the substitution interpreter, the only case
that caused new substitutions to occur was application. Therefore, this should be
the case that constructs bindings. Let’s first extract the function definition, just as
before:
<fof-env-interp-appC> ::=

| appC(f, a) =>
fd = get-fundef(f, fds)
<fof-env-interp-appC-rest>

Previously, we substituted, then interpreted. Because we have no substitution step,
we can proceed with interpretation, so long as we record the deferral of substitu-
tion. Let’s also evaluate the argument:
<fof-env-interp-appC-rest> ::=
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arg-val = interp(a, nv, fds)
interp(fd.body, <fof-env-interp-appC-rest-xtnd>, fds)

That is, the set of function definitions remains unchanged; we’re interpreting the
body of the function, as before; but we have to do it in an environment that binds
the formal parameter. Let’s now define that binding process:
<fof-env-interp-appC-rest-xtnd> ::=

xtnd-env(bind(fd.arg, arg-val), nv)
The name being bound is the formal parameter (the same name that was substi-But we’ll return to this.

tuted for, before). It is bound to the result of interpreting the argument (because
we’ve decided on an eager application semantics). And finally, this extends the
environment we already have. Type-checking this helps to make sure we got all
the little pieces right.

Once we have a definition for lookup, we’d have a full interpreter. So here’s
one:
<fof-env-interp-lookup> ::=
fun lookup(s :: String, nv :: Environment) -> Value:

cases (List) nv:
| empty => raise("unbound identifier: " + s)
| link(f, r) =>

if s == f.name:
f.value

else:
lookup(s, r)

end
end

end
Observe that looking up a free identifier still produces an error, but it has moved

from the interpreter—which is by itself unable to determine whether or not an
identifier is free—to lookup, which determines this based on the content of the
environment.

Now we have a full interpreter. You should of course test it make sure it works
as you’d expect. Let’s first set up some support code for testing:
<fof-env-interp-tests-setup> ::=

check:
f1 = fdC("double", "x", plusC(idC("x"), idC("x")))
f2 = fdC("quad", "x", appC("double", appC("double", idC("x"))))
f3 = fdC("const5", "_", numC(5))
f4 = fdC("f4", "x", s2p2d("(if x 1 0)"))
funs = [list: f1, f2, f3, f4]
fun i(e): interp(e, mt-env, funs) end
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<fof-env-interp-tests>
For instance, these tests pass:
<fof-env-interp-tests> ::=

i(plusC(numC(5), appC("quad", numC(3)))) is numV(17)
i(multC(appC("const5", numC(3)), numC(4))) is numV(20)
i(plusC(numC(10), appC("const5", numC(10)))) is numV(10 + 5)
i(plusC(numC(10), appC("double", plusC(numC(1), numC(2)))))
is numV(10 + 3 + 3)
i(plusC(numC(10), appC("quad", plusC(numC(1), numC(2)))))
is numV(10 + 3 + 3 + 3 + 3)
<fof-env-interp-another-test>

So we’re done, right?

Do Now!

Spot the bug.

26.2.3 Deferring Correctly

Here’s another test: raise is explained earlier:
section 14.5.<fof-env-interp-another-test> ::=

interp(appC("f1", numC(3)), mt-env,
[list: fdC("f1", "x", appC("f2", numC(4))),

fdC("f2", "y", plusC(idC("x"), idC("y")))])
raises "unbound identifier: x"

In our interpreter, this evaluates to numV(7). Should it?
Translated into Pyret, this test corresponds to the following two definitions and

expression:

fun f1(x): f2(4) end
fun f2(y): x + y end

f1(3)
What should this produce? f1(3) substitutes x with 3 in the body of f1, which
then invokes f2(4). But notably, in f2, the identifier x is not bound! Sure
enough, Pyret will produce an error.

In fact, so will our substitution-based interpreter!
Why does the substitution process result in an error? It’s because, when we

replace the representation of x with the representation of 3 in the representation of
f1, we do so in f1 only. (Obviously: x is f1’s parameter; even if another function This “the representation of” is

getting a little annoying, isn’t
it? Therefore, we’ll stop saying
that, but do make sure you
understand why we had to say
it. It’s an important bit of
pedantry.
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had a parameter named x, that’s a different x.) Thus, when we get to evaluating
the body of f2, its x hasn’t been substituted, resulting in the error.

What went wrong when we switched to environments? Watch carefully: this
is subtle. We can focus on applications, because only they affect the environment.
When we substituted the formal for the value of the actual, we did so by extending
the current environment. In terms of our example, we asked the interpreter to
substitute not only f2’s substitution in f2’s body, but also the current ones (those
for the caller, f1), and indeed all past ones as well. That is, the environment only
grows; it never shrinks.

Because we agreed that environments are only an alternate implementation
strategy for substitution—and in particular, that the language’s meaning should
not change—we have to alter the interpreter. Concretely, we should not ask it to
carry around all past deferred substitution requests, but instead make it start afresh
for every new function, just as the substitution-based interpreter does. This is an
easy change:
<fof-env-interp-appC-rest-xtnd-2> ::=

xtnd-env(bind(fd.arg, arg-val), mt-env)
Now we have truly reproduced the behavior of the substitution interpreter.

26.2.4 Scope

The broken environment interpreter above implements what is known as dynamic
scope. This means the environment accumulates bindings as the program exe-
cutes. As a result, whether an identifier is even bound depends on the history of
program execution. We should regard this unambiguously as a flaw of program-
ming language design. It adversely affects all tools that read and process programs:
compilers, IDEs, and humans.

In contrast, substitution—and environments, done correctly—give us lexical
scope or static scope. “Lexical” in this context means “as determined from the
source program”, while “static” in computer science means “without running the
program”, so these are appealing to the same intuition. When we examine an
identifier, we want to know two things: (1) Is it bound? (2) If so, where? By
“where” we mean: if there are multiple bindings for the same name, which one
governs this identifier? Put differently, which one’s substitution will give a value
to this identifier? In general, these questions cannot be answered statically in a
dynamically-scoped language: so your IDE, for instance, cannot overlay arrows to
show you this information (the way an IDE like DrRacket does). Thus, even thoughA different way to think about it

is that in a dynamically-scoped
language, the answer to these
questions is the same for all
identifiers, and it simply refers
to the dynamic environment. In
other words, it provides no
useful information.

the rules of scope become more complex as the space of names becomes richer
(e.g., objects, threads, etc.), we should always strive to preserve the spirit of static
scoping.
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26.2.5 How Bad Is It?

You might look at our running example and wonder whether we’re creating a tem-
pest in a teapot. In return, you should consider two situations:

1. To understand the binding structure of your program, you may need to look at
the whole program. No matter how much you’ve decomposed your program
into small, understandable fragments, it doesn’t matter if you have a free
identifier anywhere.

2. Understanding the binding structure is not only a function of the size of the
program but also of the complexity of its control flow. Imagine an interactive
program with numerous callbacks; you’d have to track through every one of
them, too, to know which binding governs an identifier.

Need a little more of a nudge? Let’s replace the expression of our example program
with this one:

if moon-visible():
f1(10)

else:
f2(10)

end

Suppose moon-visible is a function that evaluates to false on new-moon nights,
and true at other times. Then, this program will evaluate to an answer except on
new-moon nights, when it will fail with an unbound identifier error.

Exercise

What happens on cloudy nights?

26.2.6 The Top-Level Scope

Matters become more complex when we contemplate top-level definitions in many
languages. For instance, some versions of Scheme (which is a paragon of lexical
scoping) allow you to write this:

(define y 1)
(define (f x) (+ x y))

which seems to pretty clearly suggest where the y in the body of f will come from,
except:
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(define y 1)
(define (f x) (+ x y))
(define y 2)

is legal and (f 10) produces 12. Wait, you might think, always take the last one!
But consider:

(define y 1)
(define f (let ((z y)) (lambda (x) (+ x y z))))
(define y 2)

Here, z is bound to the first value of y whereas the inner y is bound to the second
value. There is actually a valid explanation of this behavior in terms of lexicalMost “scripting” languages

exhibit similar problems. As a
result, on the Web you will find
enormous confusion about
whether a certain language is
statically- or
dynamically-scoped, when in
fact readers are comparing
behavior inside functions (often
static) against the top-level
(usually dynamic). Beware!

scope, but it can become convoluted, and perhaps a more sensible option is to pre-
vent such redefinition. Pyret does precisely this, thereby offering the convenience
of a top-level without its pain.

26.2.7 Exposing the Environment

If we were building the implementation for others to use, it would be wise and a
courtesy for the exported interpreter to take only an expression and list of function
definitions, and invoke our defined interp with the empty environment. This
both spares users an implementation detail, and avoids the use of an interpreter with
an incorrect environment. In some contexts, however, it can be useful to expose the
environment parameter. For instance, the environment can represent a set of pre-
defined bindings: e.g., if the language wishes to provide pi automatically bound
to 3.2 (in Indiana).

26.3 Functions Anywhere

The introduction to the Scheme programming language definition establishes this
design principle:

Programming languages should be designed not by piling feature on
top of feature, but by removing the weaknesses and restrictions that
make additional features appear necessary.

As design principles go, this one is hard to argue with. (Some restrictions, of
course, have good reason to exist [section 26.5], but this principle forces us to
argue for them, not admit them by default.) Let’s now apply this to functions.

https://en.wikipedia.org/wiki/Indiana_Pi_Bill
https://www.schemers.org/
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One of the things we stayed coy about when introducing functions [section 26.1]
is exactly where functions go. We suggested we’re following the model of an ideal-
ized programming environment, with definitions and their uses kept separate. But,
inspired by the Scheme design principle, let’s examine how necessary that is.

Why can’t functions definitions be expressions? In our current arithmetic-
centric language we face the uncomfortable question “What value does a function
definition represent?”, to which we don’t really have a good answer. But a real
programming language obviously computes more than numbers and Booleans, so
we no longer need to confront the question in this form; indeed, the answer to the
above can just as well be, “A function value”. Let’s see how that might work out.

What can we do with functions as values? Clearly, functions are a distinct kind
of value than a number, so we cannot, for instance, add them. But there is one
evident thing we can do: apply them to arguments! Thus, we can allow function
values to appear in the function position of an application. The behavior would,
naturally, be to apply the function. We are therefore proposing a language where
the following would be a valid program (where I’ve used brackets so we can easily
identify the function, and made up a syntax for it):

(+ 2 ([deffun f x (* x 3)] 4))

This would evaluate to (+ 2 (* 4 3)), or 14. (Did you see that we just used
substitution?)

26.3.1 Functions as Expressions and Values

Let’s first define the core language to include function definitions:
<hof-named-dd> ::=

data ExprC:
| numC(n :: Number)
| plusC(l :: ExprC, r :: ExprC)
| multC(l :: ExprC, r :: ExprC)
| trueC
| falseC
| ifC(c :: ExprC, t :: ExprC, e :: ExprC)
| idC(s :: String)
<hof-named-dd-fdC/1>
<hof-named-dd-appC>

end
For now, we’ll simply copy function definitions into the expression language. We’re
free to change this if necessary as we go along, but for now it at least allows us to
reuse our existing test cases.
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<hof-named-dd-fdC/1> ::=
| fdC(name :: String, arg :: String, body :: ExprC)

This enables us to now get rid of FunDef.
We also need to determine what an application looks like. What goes in the

function position of an application? We want to allow an entire function definition,
not just its name. Because we’ve lumped function definitions in with all other
expressions, we need the annotation to be ExprC, but we can add a refinement
([REF]) to make clear it has to be a function definition:
<hof-named-dd-appC> ::=

| appC(f :: ExprC%(is-fdC), a :: ExprC)
With this definition of application, we no longer have to look up functions by

name, so the interpreter can get rid of the list of function definitions. If we need
it we can restore it later, but for now let’s just explore what happens with function
definitions are written at the point of application: so-called immediate functions.
Thus our interpreter looks like this:
<hof-named-interp/1> ::=

fun interp(e :: ExprC, nv :: Environment):
# removed return annotation of Value because fdC is not a Value!
cases (ExprC) e:

| numC(n) => numV(n)
| plusC(l, r) => arith-binop(lam(x, y): x + y end, l, r, nv)
| multC(l, r) => arith-binop(lam(x, y): x * y end, l, r, nv)
| trueC => boolV(true)
| falseC => boolV(false)
| ifC(cnd, thn, els) =>

ic = interp(cnd, nv)
if is-boolV(ic):

if ic.b:
interp(thn, nv)

else:
interp(els, nv)

end
else:

raise('not a boolean')
end

| idC(s) => lookup(s, nv)
<hof-named-interp-fun/1>
<hof-named-interp-app/1>
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Do Now!

Observe that we’ve left out the return annotation on interp. Why do you
think this is? Run some examples to figure it out.

We need to add a case to the interpreter for function definitions, and this is a
good candidate:
<hof-named-interp-fun/1> ::=

| fdC(_, _, _) => e
The interpreter now no longer returns just Values; now it also returns function
definitions. We could update our definition of Value (and thus restore the anno-
tation), but we’ll soon find that we need to think this through a little more than we
have.

When we need to evaluate an application, we can simply evaluate the function
position to obtain a function definition, and the rest of the evaluation process can
remain unchanged:
<hof-named-interp-app/1> ::=
| appC(f, a) =>
fun-val = interp(f, nv)
arg-val = interp(a, nv)
interp(fun-val.body, xtnd-env(bind(fun-val.arg, arg-val), mt-env))

With that, our former examples works just fine:

check:
f1 = fdC("double", "x", plusC(idC("x"), idC("x")))
f2 = fdC("quad", "x", appC(f1, appC(f1, idC("x"))))
f3 = fdC("const5", "_", numC(5))
f4 = fdC("f4", "x", s2p2d("(if x 1 0)"))
fun i(e): interp(e, mt-env) end

i(plusC(numC(5), appC(f2, numC(3)))) is numV(17)
i(multC(appC(f3, numC(3)), numC(4))) is numV(20)
i(plusC(numC(10), appC(f3, numC(10)))) is numV(10 + 5)
i(plusC(numC(10), appC(f1, plusC(numC(1), numC(2)))))

is numV(10 + 3 + 3)
i(plusC(numC(10), appC(f2, plusC(numC(1), numC(2)))))

is numV(10 + 3 + 3 + 3 + 3)
end

26.3.2 A Small Improvement
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Do Now!

Is there any part of our interpreter definition that we never use?

Yes there is: the name field of a function definition is never used. This is
because we no longer look up functions by name: we obtain their definition through
evaluation. Therefore, a simpler definition suffices:
<hof-fun/2> ::=

| fdC(arg :: String, body :: ExprC)

Do Now!

Do you see what else you need to change?

In addition to the test cases, you also need to alter the interpreter fragment that
handles definitions:
<hof-interp-fun/2> ::=
| fdC(_, _) => e

In other words, our functions are now anonymous.

26.3.3 Nesting Functions

The body of a function definition is an arbitrary expression. A function definition
is itself an expression. That means a function definition can contain a...function
definition. For instance:

inner-fun = fdC("x", plusC(idC("x"), idC("x")))
outer-fun = fdC("x", inner-fun)
which evaluates to

fdC("x", fdC("x", plusC(idC("x"), idC("x"))))
Applying this to numC(4) results in

fdC("x", plusC(idC("x"), idC("x")))
We might try to apply this to a number—which it should double—but we run afoul
of the refinement annotation on the function position of an application, which en-
visioned only immediate functions, not expressions that can evaluate to functions.
Therefore, we should remove this restriction:

...
Suppose, however, we use a slightly different function definition:

appC(fdC("x", fdC("y", plusC(idC("x"), idC("y")))), numC(4))
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which evaluates to

fdC("y", plusC(idC("x"), idC("y")))
Now we have a clear problem, because x is no longer bound, even though it clearly
was in an outer scope. Indeed, if we apply it to any value, we get an error because
of the unbound identifier.

26.3.4 Nested Functions and Substitution

Consider the last two examples with a substitution-based interpreter instead. If we
evaluate the application

appC(fdC("x", fdC("x", plusC(idC("x"), idC("x")))), numC(4))
using substitution, the inner binding masks the outer one, so no substitutions should
take place, giving the same result:

fdC("x", plusC(idC("x"), idC("x")))
In the other example—

appC(fdC("x", fdC("y", plusC(idC("x"), idC("y")))), numC(4))
—however, substitution would replace the outer identifier, resulting in

fdC("y", plusC(numC(4), idC("y")))
So once again, if we take substitution as our definition of correctness, we see that
our interpreter produces the wrong answer.

In other words, we’re again failing to faithfully capture what substitution would
have done. A function value needs to remember the substitutions that have already
been applied to it. Because we’re representing substitutions using an environment,
a function value therefore needs to be bundled with an environment. This resulting
data structure is called a closure. “Save the environment! Create

a closure today!”—Cormac
Flanagan

26.3.5 Updating Values

In other words, a function can’t just evaluate to its body: it must evaluate to a
closure:
<hof-value> ::=

data Value:
| numV(n :: Number)
| boolV(b :: Boolean)
| closV(f :: ExprC%(is-fdC), e :: Environment)

end
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The refinement annotation reflects that we are expecting a very specific kind of
expression—that representing a function definition—in a closure.

The interpreter now uses it. Most cases are unchanged from before:Look, we got our return value
annotation back! <hof-interp> ::=

fun interp(e :: ExprC, nv :: Environment) -> Value:
cases (ExprC) e:
<hof-named-interp/1>
<hof-interp-fdC>
<hof-interp-appC>

end
end

There are just two interesting cases: closure construction and closure use.

Do Now!

Write out these two cases.

When evaluating a function, we have to create a closure that records the envi-
ronment at the time of function creation:“[Closures] are relegated to

relative obscurity until Java
makes them popular by not
having them.”—James Iry

<hof-interp-fdC> ::=
| fdC(_, _) => closV(e, nv)

This leaves function applications. Now the function position could be any expres-
sion, so we have to evaluate it first. That produces a value that we expect is an in-
stance of closV. From it we can therefore extract the function’s body (.f.body)
and argument name (.f.arg), and we evaluate the body in the environment taken
from the closure (clos.e):
<hof-interp-appC> ::=

| appC(f, a) =>
clos = interp(f, nv)
arg-val = interp(a, nv)
interp(clos.f.body, xtnd-env(bind(clos.f.arg, arg-val), clos.e))

Exercise

Observe that the argument to interp is clos.e rather than mt-env.
Write a program that illustrates the difference.

This now computes the same answer we would have gotten through substitu-
tion.

Do Now!

If we now switch back to using substitution, will we encounter any problems?

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
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Yes, we will. We’ve defined substitution to replace program text in other pro-
gram text. Strictly speaking we can no longer do this, because Value terms cannot
be contained inside ExprC ones. That is, substitution is predicated on the assump-
tion that the type of answers is a form of syntax. It is actually possible to carry
through a study of programming under this assumption, but we won’t take that
path here.

26.3.6 Sugaring Over Anonymity

Now let’s get back to the idea of naming functions, which has evident value for
program understanding. Observe that we do have a way of naming things: by
passing them to functions, where they acquire a local name (that of the formal
parameter). Anywhere within that function’s body, we can refer to that entity using
the formal parameter name.

Therefore, we can name a function definion using another...function definition.
For instance, the Pyret code

fun double(x): x + x end
double(10)
could first be rewritten as the equivalent

double = lam(x): x + x end
double(10)
which by substitution evaluates to (lam(x): x + x end)(10) or 20.

Indeed, this pattern is a local naming mechanism, and virtually every language
has it in some form or another. In languages like Lisp and ML variants, it is usually
called let. For instance, in Racket: Note that in different languages,

let has different scope rules:
in some cases it permits
recursive definitions, and in
others it doesn’t.

(let ([double (lambda (x) (+ x x))])
(double 10))

In Pyret, as in several other languages like Java, there is no explicitly named con-
struct of this sort, but any definition block permits local definitions such as this:

fun something():
double = lam(x): x + x end
double(10)

end

Here’s a more complex example, written in Racket to illustrate a point about
scope:
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(define (double x) (+ x x))
(define (quad x) (double (double x)))
(quad 10)

This could be rewritten as

(let ([double (lambda (x) (+ x x))])
(let ([quad (lambda (x) (double (double x)))])

(quad 10)))

which works just as we’d expect; but if we change the order, it no longer works—

(let ([quad (lambda (x) (double (double x)))])
(let ([double (lambda (x) (+ x x))])

(quad 10)))

—because quad can’t “see” double. So we see that top-level binding is different
from local binding: essentially, the top-level has “infinite scope”. This is the source
of both its power and problems.

26.4 Recursion and Non-Termination

Hopefully you can convince yourself that our pure expression languages—with
only arithmetic and conditionals—could not create non-terminating programs. Why?
Because its interpreter is purely structural over a non-cyclic datatype. In contrast,
even our very first function interpreter is generative, which therefore opens up the
possibility that it can have non-terminating computation.

Do Now!

Construct a non-terminating program for that interpreter.

And, indeed, it can. Here’s a function definition:

il = fdC("inf-loop", "x", appC("inf-loop", numC(0)))
and we just need to get it started:

interp(appC("inf-loop", numC(0)), [list: il])

Exercise

Precisely identify the generative recursion that enables this.
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Do Now!

Why does this work? Why is this an infinite loop?

What’s happening here is actually somewhat subtle. The initial call to interp
results in the interpreter finding a function and interpreting its body, which results
in another call to interp: which finds the function and interprets its body, which
results...and so on. If for some reason Pyret did not support recursion (which,
historically, some languages did not!), then this would not work. Indeed, there is
still something we are leaving to Pyret:

Do Now!

Does this program truly run for “ever” (meaning, as long as the computer is
functioning properly), or does it run out of stack space?

Okay, that was easy. Now let’s consider our most recent interpreter. What can
it do?

Consider this simple infinite loop in Pyret:

fun loop-forever(): loop-forever() end
loop-forever()
Let’s convert it to use an anonymous function:

loop-forever = lam(): loop-forever() end
loop-forever()

Seems fine, right? Use the let desugaring above:

(lam(loop-forever): loop-forever() end)(lam(): loop-forever() end)

But loop-forever isn’t bound!
Therefore, Pyret’s fun is clearly doing something more than just textual sub-

stitution: it is also “tying the loop” for recursive definitions through a hidden rec
[section 21.3].

Do Now!

Can we try anything else that might succeed?

Actually, we can. Here it is. To make it more readable we’ll first give the
important intermediate term a name (and then see that the name isn’t necessary):

little-omega = lam(x): x(x) end
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Given this, we can then define:

omega = little-omega(little-omega)

Exercise

Why does this run forever? Consider using substitution to explain why.

Note that we could have written the whole thing without any names at all:

(lam(x): x(x) end)(lam(x): x(x) end)

As the names above suggest, the function is conventionally called ω (little omega
in Greek), and the bigger term Ω (capital omega). To understand how we could
have arrived at this magical term, see [REF].

26.5 Functions and Predictability

We began [section 26.1] with a language where at all application points, we knew
exactly which function was going to be invoked (because we knew its name, and
the name referred to one of a fixed global set). These are known as first-order
functions. In contrast, we later moved to a language [section 26.3] with first-class
functions: those that had the same status as any other value in the language.

This transition gave us a great deal of new flexiblity. For instance, we saw
[section 26.3.6] that some seemingly necessary language features could instead be
implemented just as syntactic sugar; indeed, with true first-class functions, we can
define all of computation ([REF]). So what’s not to like?

The subtle problem is that whenever we increase our expressive power, we
correspondingly weaken our predictive power. In particular, when confronted with
a particular function application in a program, the question is, can we tell precisely
which function is going to be invoked at this point? With first-order functions,
yes; with higher-order functions, this is undecidable. Having this predictive power
has many important consequences: a compiler can choose to inline (almost) every
function application; a programming environment can give substantial help about
which function is being called at that point; a security analyzer can definitively
rule out known bad functions, thereby reducing the number of useless alerts it
generates. Of course, with higher-order functions, all these operations are still
sometimes possible; but they are not always possible, and how possible they are
depends on the structure of the program and the cleverness of tools.



26.5. FUNCTIONS AND PREDICTABILITY 339

Exercise

With higher-order functions, why is determining the precise function at an
application undecidable?

Exercise

Why does the above reference to inlining say “almost”?
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Chapter 27

Reasoning about Programs: A
First Look at Types

One of the themes of this book is predictability [section 1.2]. One of our key tools
in reasoning about program behavior before we run it is the static checking of
types. For example, when we write x :: Number, we mean that x will always
hold a Number, and that all parts of the program that depend on x can rely on this
statement being enforced. As we will see, types are just one point in a spectrum of
invariants we might wish to state, and static type checking—itself a diverse family
of techniques—is also a point in a spectrum of methods we can use to enforce the
invariants.

27.1 Types as a Static Discipline

In this chapter, we will focus especially on static type checking: that is, checking
(declared) types before the program even executes. We will explore some of the This is an extremely rich and

active subject. For further
study, we strongly recommend
reading Pierce’s Types and
Programming Languages.

design space of types and their trade-offs. Finally, though static typing is an espe-
cially powerful and important form of invariant enforcement, we will also examine
some other techniques that we have available [REF].

Consider this Pyret program:

fun f(n :: Number) -> Number:
n + 3

end

f("x")
We would like to receive a type error before the program begins execution. The Pyret does not currently

perform static type checking,
but this will soon change.341
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same program (without the type annotations) can fail only at run-time:

fun f(n):
n + 3

end

f("x")

Exercise

How would you test the assertions that one fails before the program executes
while the other fails during execution?

Now consider the following Pyret program:

fun f n:
n + 3

end

This too fails before program execution begins, with a parse error. Though we think
of parsing as being somehow distinct from type-checking—usually because a type-
checker assumes it has a parsed program to begin with—it can be useful to think
of parsing as being simply the very simplest kind of type-checking: determining
(typically) whether the program obeys a context-free syntax. Type-checking then
asks whether it obeys a context-sensitive (or richer) syntax. In short, type-checking
is a generalization of parsing, in that both are concerned with syntactic methods for
enforcing disciplines on programs.This particular, and very

influential, phrasing is due to
John Reynolds.

We will begin by introducing a traditional core language of types. Later, we
will explore both extensions [REF] and variations [REF].

27.2 The Principle of Substitutability

The essence of any typing mechanism is usually the principle of substitutability:
two types A and B “match” when values of one can be used in place of values of
the other. Therefore, the design of a type system implicitly forces us to consider
when such substitutions are safe (in the sense given by section 28.3).

Of course, the simplest notion of substitutability is simply identity: a type can
only be substituted with itself, and nothing else. For instance, if the declared type
of a function’s parameter is String, then you can only call it with String-
typed values, nothing else. This is known as invariance: the set of values that can
be passed into a type cannot “vary” from the set expected by that type. This is
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so obvious that it might seem to hardly warrant a name! However, it is useful to
name because it sets up a contrast with later type systems when we will have richer,
non-trivial notions of substitutability (see section 32.6.1).

27.3 A Type(d) Language and Type Errors

Before we can define a type checker, we have to fix two things: the syntax of our
typed core language and, hand-in-hand with that, the syntax of types themselves.

We’ll begin with our language with functions-as-values [section 26.3]. To this
language we have to add type annotations. Conventionally, we don’t impose type
annotations on constants or on primitive operations such as addition, because this
would be unbearably tedious; instead, we impose them on the boundaries of func-
tions or methods. Over the course of this study we will explore why this is a good
locus for annotations.

Given this decision, our typed core language becomes:

data TyExprC:
| numC(n :: Number)
| plusC(l :: TyExprC, r :: TyExprC)
| multC(l :: TyExprC, r :: TyExprC)
| trueC
| falseC
| ifC(c :: TyExprC, t :: TyExprC, e :: TyExprC)
| idC(s :: String)
| appC(f :: TyExprC, a :: TyExprC)
| fdC(arg :: String, at :: Type, rt :: Type, body :: TyExprC)

end

That is, every procedure is annotated with the type of argument it expects and type
of argument it purports to produce.

Now we have to decide on a language of types. To do so, we follow the tradi-
tion that the types abstract over the set of values. In our language, we have three
kinds of values. It follows that we should have three kinds of types: one each for
numbers, Booleans, and functions.

What information does a number type need to record? In most languages, there
are actually many numeric types, and indeed there may not even be a single one
that represents “numbers”. However, we have ignored these gradations between
numbers [section 24.3], so it’s sufficient for us to have just one. Having decided
that, do we record additional information about which number? We could in prin-
ciple, but that would mean for types to check, we would have to be able to decide
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whether two expressions compute the same number—a problem that reduces to the
Halting Problem [REF].In some specialized type

systems, however, we do record
some information about the
number. These systems either
have some means of
approximation that lets them
avoid the Halting Problem, or
embrace it by not guaranteeing
termination!

We treat Booleans just like numbers: we ignore which Boolean it is. Here, we
perhaps have more value in being precise, because there are only two values we
need to track, not an infinite number. That means in some cases, we even know
which branch of a conditional we will take, and can examine only that branch
(though that may miss a type-error lurking in the other branch: what should we do
about that?). However, even the problem of knowing precisely which Boolean we
have reduces to the Halting Problem [REF].

Exercise

Construct an argument for why determining which number or Boolean an
arbitrary expression evaluates to is equivalent to solving the Halting Problem.

As for functions, we have more information: the type of expected argument,
and the type of claimed result. We might as well record this information we have
been given until and unless it has proven to not be useful. Combining these, we
obtain the following abstract language of types:

data Type:
| numT
| boolT
| funT(a :: Type, r :: Type)

end

Now that we’ve fixed both the term and type structure of the language, let’s make
sure we agree on what constitute type errors in our language (and, by fiat, every-
thing not a type error must pass the type checker). There are three obvious forms
of type errors:

• One or both arguments of + is not a number, i.e., does not have type numT.

• One or both arguments of * is not a number.

• The expression in the function position of an application is not a function,
i.e., does not have type funT.

Do Now!

Any more?

We’re actually missing one:
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• The expression in the function position of an application is a function but the
type of the actual argument does not match the type of the formal argument
expected by the function.

Do Now!

Any more?

What about:

• The expression in the function position of an application is a function but its
return type does not match the type expected by the expression that invokes
the function?

And we’re still not done!
Instead of this kind of ad hoc enumeration, what we really ought to do is sys-

tematically go over each of the syntactic forms of our language and ask how each
of them can produce a type error. That indicates:

| numC(n :: Number)
| plusC(l :: TyExprC, r :: TyExprC)
| multC(l :: TyExprC, r :: TyExprC)
A number on its own can never be a type error. For addition and multiplication,
both branches must have numeric type.

| trueC
| falseC
| ifC(c :: TyExprC, t :: TyExprC, e :: TyExprC)
Just as with numbers, Boolean constants on their own cannot be a type error. In a
conditional, however, we require:

• The conditional expression must have type Boolean.

• Both branches must have the same type (whatever it may be). Implicit is the idea that we can
easily determine when two
types are the “same”. We’ll
return to this in section 32.6.1.

And finally:

| idC(s :: String)
| appC(f :: TyExprC, a :: TyExprC)
| fdC(arg :: String, at :: Type, rt :: Type, body :: TyExprC)
An identifier on its own is never type-erroneous. Applications expect:

• The function position (f) must have a function type (funT).
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• The type of the actual argument expression (a) must match the argument
type (.arg) of the function position.

And finally, a function definition expects:

• The type of the body—assuming the formal argument (arg) has been given
a value of the declared type (at)—matches the type declared (rt) as the
return type.

27.3.1 Assume-Guarantee Reasoning

The last few cases we just saw had a very interesting structure. Did you spot it?
The rules for function definition and declaration complement each other per-

fectly. Let’s illustrate this with a program written in Pyret syntax:

fun f(x :: String) -> Number:
if x == "pi":
3.14

else:
2.78

end
end

2 + f("pi")
When type-checking the definition of f, we assume that if and when f is eventually
applied, it will be applied to a value of String type. We do assume this because
the annotation on x is String. We can assume this because when checking the
application, we will first look up the type of f, observe that it expects a String-
typed value, and confirm that the actual argument indeed matches this type. That
is, the type-checker’s treatment of application guarantees that this assumption is
safe.

Similarly, when type-checking the application, having looked up the type of
f, we assume that it will indeed return a value of type Number. We can assume
this because that is the return type annotation of f. We do assume it because the
type-checker will ensure that the body of f—assuming the type of x—will indeed
return a Number. That is, once again, the type-checker’s treatment of function
definitions guarantees that the assumption at function applications is safe.

In short, the treatment of function definition and application are complemen-
tary. They are joined together by a method called assume-guarantee reasoning,
whereby each side’s assumptions are guaranteed by the other side, and the two
stitch together perfectly to give us the desired safe execution (which we elaborate
on later: section 28.3).
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27.4 A Type Checker for Expressions and Functions

27.4.1 A Pure Checker

Since the job of a type-checker is to pass judgment on programs—in particular,
to indicate whether a program passes or fails type-checking—a natural type for a
type-checker would be:

tc :: TyExprC -> Boolean

However, because we know expressions contain identifiers, it soon becomes clear
that we will want a type environment, which maps names to types, analogous to the
value environment we have seen so far.

Exercise

Define the types and functions associated with type environments.

Thus, we might begin our program as follows:
<hof-tc-bool> ::=

fun tc(e :: TyExprC, tnv :: TyEnv) -> Boolean:
cases (TyExprC) e:
<hof-tc-bool-numC>
<hof-tc-bool-idC>
<hof-tc-bool-appC>

end
end

As the abbreviated set of cases above suggests, this approach will not work out.
We’ll soon see why.

Let’s begin with the easy case: numbers. Does a number type-check? Well, on
its own, of course it does; it may be that the surrounding context is not expecting a
number, but that error would be signaled elsewhere. Thus:
<hof-tc-bool-numC> ::=
| numC(_) => true

(Notice that we’re expressly ignoring which number it is.)
Now let’s handle identifiers. Is an identifier well-typed? Again, on its own it

would appear to be, provided it is actually a bound identifier; it may not be what
the context desires, but hopefully that too would be handled elsewhere. Thus we
might write
<hof-tc-bool-idC> ::=
| idC(s) => ty-lookup(s, tnv)
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where ty-lookup returns true if the identifier is bound, and false otherwise.
This should make you a little uncomfortable: we seem to be throwing away

valuable information about the type of the identifier. Of course, types do throw
away information (e.g., which specific number an expression computes). However,
the kind of information we’re throwing away here is much more significant: it’s
not about a specific value within a type, but the type itself. Nevertheless, let’s push
on.It might also bother you that, by

only returning a Boolean, we
have no means to express what
type error occurred. But you
might assuage yourself by
saying that’s only because we
have too weak a return type.

Now we tackle applications. We should type-check both the function part, to
make sure it’s a function, then ensure that the actual argument’s type is consistent
with what the function declares to be the type of its formal argument. How does
the code look?
<hof-tc-bool-appC> ::=

| appC(f, a) =>
f-t = tc(f, tnv)
a-t = tc(a, tnv)
...

The two recursive calls to tc can only tell us whether the function and argument
expressions type-check or not. Critically, they cannot tell us whether the argument
expression’s type (what is it?) matches that of the function’s expected argument
type (what is it?). Though we might be able to fudge this in the case of simple
expressions, for complex ones we cannot just examine the expression; furthermore,
this violates our principle of wanting to avoid probing deep into expressions. Put
differently, we’d like to have written

| appC(f, a) =>
f-t = tc(f, tnv)
a-t = tc(a, tnv)
if is-funT(f-t):
if a-t == f-t.arg:

but f-t is a Boolean and hence can never pass is-funT; similarly, compar-
ing a-t with f-t.arg is meaningless because both are Booleans (representing
whether or not the corresponding sub-expressions type-checked), not the actual
types of those expressions.

In other words, what we need is something that will calculate the type of an
expression, no matter how complex it is. Of course, such a procedure could only
succeed if the expression is well-typed; otherwise it would not be able to provide
a coherent answer. In other words, a type “calculator” has type “checking” as a
special case!
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Do Now!

That was subtle. Read it again.

We should therefore strengthen the inductive invariant on tc: that it not only
tells us whether an expression is typed, but also what its type is. Indeed, by giving
any type at all it confirms that the expression types, and otherwise it signals an
error.

27.4.2 A Calculator and Checker

Let’s now define this richer notion of a type “checker”.
<hof-tc> ::=

fun tc(e :: TyExprC, tnv :: TyEnv) -> Type:
cases (TyExprC) e:
<hof-tc-numC>
<hof-tc-plusC>
<hof-tc-multC>
<hof-tc-bools>
<hof-tc-idC>
<hof-tc-fdC>
<hof-tc-appC>

end
end
Now let’s fill in the pieces. Numbers are easy: they have the numeric type.

<hof-tc-numC> ::=
| numC(_) => numT

Similarly, identifiers have whatever type the environment says they do (and if they
aren’t bound, looking them up signals an error).
<hof-tc-idC> ::=
| idC(s) => ty-lookup(s, tnv)

Observe, so far, the similarity to and difference from interpreting: in the identi-
fier case we did essentially the same thing (except we returned a type rather than
an actual value), whereas in the numeric case we returned the abstract “number”
(numT) rather than indicate which specific number it was.

Let’s now examine addition. We must make sure both sub-expressions have
numeric type; only if they do will the overall expression evaluate to a number
itself. It will be useful to employ a helper function:
<hof-tc-plusC> ::=

| plusC(l, r) => tc-arith-binop(l, r, tnv)
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where:

fun tc-arith-binop(l :: TyExprC, r :: TyExprC, tnv :: TyEnv) -> Type:
if (tc(l, tnv) == numT) and (tc(r, tnv) == numT):
numT

else:
raise(’type error in arithmetic’)

end
end

It’s worth not glossing over multiplication:
<hof-tc-multC> ::=
| multC(l, r) => tc-arith-binop(l, r, tnv)

Do Now!

Did you see what’s different?

That’s right: nothing! That’s because, from the perspective of type-checking
(in this type language), there is no difference between addition and multiplication,
or indeed between any two operations that consume two numbers and return one.
Because we are ignoring the actual numbers, we don’t even need to bother passing
tc-arith-binop a function that reflects what to do with the pair of numbers.

Observe another difference between interpreting and type-checking. Both care
that the arguments be numbers. The interpreter then returns a precise sum or prod-
uct, but the type-checker is indifferent to the differences between them: therefore
the expression that computes what it returns (numT) is a constant, and the same
constant in both cases.

Next, let’s handle Boolean values and conditionals. We’re simply going to
transcribe into code what we earlier agreed to do:
<hof-tc-bools> ::=

| trueC => boolT
| falseC => boolT
| ifC(cnd, thn, els) =>

cnd-t = tc(cnd, tnv)
if cnd-t == boolT:

thn-t = tc(thn, tnv)
els-t = tc(els, tnv)
if thn-t == els-t:

thn-t
else:

raise("conditional branches don't match")
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end
else:

raise("conditional isn't Boolean")
end

However, recall our discussion of section 25.1, all of which have consequences for
type-checking. Here we are applying the decisions we made there.

Exercise

Consider each of the three earlier decisions. Change each one, and explain
the consequences it has for the type-checker.

Finally, the two hard cases: application and functions. We’ve already dis-
cussed what application must do: compute the value of the function and argument
expressions; ensure the function expression has function type; and check that the
argument expression is of compatible type. If all this holds up, then the type of the
overall application is whatever type the function body would return (because the
value that eventually returns at run-time is the result of evaluating the function’s
body). Note that this subtly depends on

evaluation and type-checking
being in harmony. We discuss
this under section 28.3.

<hof-tc-appC> ::=
| appC(f, a) =>
f-t = tc(f, tnv)
a-t = tc(a, tnv)
if is-funT(f-t):

if a-t == f-t.arg:
f-t.ret

else:
raise("argument type doesn't match declared type")

end
else:

raise("not a function in application position")
end

That leaves function definitions. The function has a formal parameter; unless this
is bound in the type environment, any use of that parameter in body would result
in a type error. Thus we have to extend the type environment with the formal name
bound to its type, and in that extended environment type-check the body. Whatever
value this computes must be the same as the declared type of the body. If that is
so, then the function itself has a function type from the type of the argument to the
type of the body.
<hof-tc-fdC> ::=
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| fdC(a, at, rt, b) =>
bt = tc(b, xtend-t-env(tbind(a, at), tnv))
if bt == rt:

funT(at, rt)
else:

raise("body type doesn't match declared type")
end

27.4.3 Type-Checking Versus Interpretation

Do Now!

When confronted with a first-class function, our interpreter created a clo-
sure. However, we don’t seem to have any notion of a “closure” in our type-
checker, even though we’re using an (type) environment. Why not? In par-
ticular, recall that the absence of closures resulted in violation of static scope.
Is that happening here? Write some tests to investigate.

Observe a curious difference between the interpreter and type-checker. In the
interpreter, application was responsible for evaluating the argument expression,
extending the environment, and evaluating the body. Here, the application case
does check the argument expression, but leaves the environment alone, and simply
returns the type of the body without traversing it. Instead, the body is actually
traversed by the checker when checking a function definition, so this is the point at
which the environment actually extends.

Exercise

Why is the time of traversal different between interpretation and type-checking?

The consequences of this are worth understanding.

• Consider the Pyret function

p =
lam(x :: Number) -> (Number -> Number):

lam(y :: Number) -> Number:
x + y

end
end

When we simply define p, the interpreter does not traverse the interior of
these expressions, in particular the x + y. Instead, these are suspended
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waiting for later use (a feature we actually exploit [REF laziness]). Further-
more, when we apply p to some argument, this evaluates the outer function,
resulting in a closure (that closes over the binding of x).

Now instead consider the type-checker. As soon as we are given this defini-
tion, it traverses the entire expression, including the innermost sub-expression.
Because it knows everything it needs to know about x and y—their types—
it can immediately type-check the entire expression. This is why it doesn’t
not require to create a closure: there is nothing to be put off until application
time (indeed, we don’t want to put type-checking off until execution).

Another way to think about it is that it behaves like substitution does—and
substitution did not need closures to provide static scoping, either—but even
more eagerly: it can perform substitution with just the program text without
any values at all, because it is substituting types, which are already given.
The fact that we use a type environment makes this harder to see, because
we may have come to associate environments with closures. However, what
matters is when the necessary value is available. Put differently, we used an
environment primarily out of convention: here, we could have used (type)
substitution just as well.

Exercise

Write examples to study this. Consider converting the above example
as a starting point. Also convert your examples from earlier.

• Consider the following expression:

lam(f :: (Number -> String), n :: Number) -> String:
f(n)

end

When evaluating the inner f(n), the interpreter has access to actual values
for f and n. In contrast, when type-checking it, it does not know which
function will be passed in as f. How, then, can it type-check the use?

The answer is that the annotation tells the type-checker everything it needs to
know. The annotation says that f must accept numbers; since n is annotated
to be a number, the application works. It also says that f will return strings;
because that is what the overall function returns, this also passes.

In other words, the annotation (Number -> String) represents not one
but an infinite family of all functions of that type, without committing to any
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one of them. The type checker then checks that any such function will work
in this setting. Once it has done its job, it doesn’t matter which function we
actually pass in, provided it has this type. Checking that is, of course, the
heart of section 27.3.1.

27.5 Type-Checking, Testing, and Coverage

A type-checker can be thought of as a very particular kind of testing framework:

• Instead of using concrete values, it uses only types. Therefore, it cannot
check fine gradations inside values.

• In return, it works statically: that is, it’s like running a lightweight testing
procedure before ever running the program. (We should not underestimate
the value of this: programs that depend on interactive or other external input,
on specialized hardware, on timing, and so on, can be quite difficult to test.
For such programs, especially, obtaining a lightweight form of testing that
does not require being able to run it at all is invaluable.)

• Testing only covers the parts of a program that are exercised by test cases.
In contrast, the type-checker exercises the whole program. Therefore, it can
catch lurking errors. Of course, it also means that the entire program has to
be type-conformant: you can’t have some parts (e.g., conditional branches)
that are not yet conformant, the way they can fail to work correctly but can
be ignored by tests that don’t exercise them.

• Finally, types provide another very important property: quantification. Re-
call our earlier example: the type checker has established something about
an infinite number of functions!

This last point gets to the heart of the tradeoff between types and testing: types are
“broad” while tests are “deep”. That is, because tests deal with very specific values
and their actual evaluation, they can ask arbitrarily deep questions but about that
one situation only. Types, in contast, lacking the specificity provided by both values
and evaluation, cannot ask deep questions; they compensate by being able to talk
about all possible values of some shape, providing their breadth. As this discussion
illustrates, neither attribute dominates the other: a good software practice will use
a judicious combination of both.
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27.6 Recursion in Code

Now that we’ve obtained a basic programming language, let’s add recursion to it.
We saw earlier [section 26.4] that this could be done quite easily. It’ll prove to be
a more complex story here.

27.6.1 A First Attempt at Typing Recursion

Let’s now try to express a simple recursive function. We’ve already seen how
to write infinite loops for first-order functions. Annotating them introduces no
complications.

Exercise

Confirm that adding types to recursive and non-terminating first-order func-
tions causes no additional problems.

Now let’s move on to higher-order functions. We’ve already seen that this
results in an infinite loop:

(fun(x): x(x) end)(fun(x): x(x) end)
Now that we have a typed language, we have to annotate it. (Conventionally, we
call this term Ω.)

Recall that this program is formed by applying ω to itself. Of course, it is not
a given that identical terms must have precisely the same type, because it depends
on the context of use. However, the specific structure of ω means that it is the
same term that ends up in both contexts—as function and argument—so the types
of these had better be the same. In other words, typing one instance of ω suffices
to type them both.

Therefore, let’s try to type ω; let’s call this type T. It’s clearly a function type,
and the function takes one argument, so it must be of the form A -> B. Now what
is that argument? It’s ω itself. That is, the type of the value going into A is itself
T. Thus, the type of ω is T, which is A -> B, which is the same as T -> B.
This expands into (A -> B) -> B, which is the same as (T -> B) -> B.
Therefore, this further expands to ((A -> B) -> B) -> B, and so on. In
other words, this type cannot be written as any finite string!

Do Now!

Did you notice the subtle but important leap we just made?
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Do Now!

We have just argued that we can’t type ω. But why does it follow that we
can’t type Ω?

27.6.2 Program Termination

Because type-checking follows by recurring on sub-terms, to type Ω, we have to be
able to type ω and then combine its type to obtain one for Ω. But, as we’ve seen,
typing ω seems to run into serious problems. From that, however, we jumped to
the conclusion that ω’s type cannot be written as any finite string, for which we’ve
given only an intuition, not a proof. In fact, something even stranger is true: in the
type system we’ve defined so far, we cannot type Ω at all!

This is a strong statement, but it follows from something even stronger. The
typed language we have so far has a property called strong normalization: every
expression that has a type will terminate computation after a finite number of steps.
In other words, this special (and peculiar) infinite loop program isn’t the only one
we can’t type; we can’t type any infinite loop (or even potential infinite loop). A
rough intuition that might help is that any type—which must be a finite string—can
have only a finite number of ->’s in it, and each application discharges one, so we
can perform only a finite number of applications.

Exercise

Why is this not true when we have named first-order functions?

If our language permitted only straight-line programs, this would be unsurpris-
ing. However, we have conditionals and even functions being passed around as
values, and with those we can encode almost every program we’re written so far.
Yet, we still get this guarantee! That makes this a somewhat astonishing result.

Exercise

Try to encode lists using functions in the untyped and then in the typed lan-
guage (see [REF] if you aren’t sure how). What do you see? And what does
that tell you about the impact of this type system on the encoding?

This result also says something deeper. It shows that, contrary to what you may
believe—that a type system only prevents a few buggy programs from running—a
type system can change the semantics of a language. Whereas previously we could
write an infinite loop in just one to two lines, now we cannot write one at all. It
also shows that the type system can establish invariants not just about a particular
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program, but about the language itself. If we want to absolutely ensure that a
program will terminate, we simply need to write it in this language and pass the
type checker, and the guarantee is ours!

What possible use is a language in which all programs terminate? For general-
purpose programming, none, of course. But in many specialized domains, it’s a
tremendously useful guarantee to have. Here are several examples of domains that
could benefit from it:

• A complex scheduling algorithm (the guarantee would ensure that the sched-
uler completes and that the tasks being scheduled will actually run).

• A packet-filter in a router. (Network elements that go into infinite loops put
a crimp on utility.)

• A compiler. (The program it generates may or may not terminate, but it
ought to at least finish generating the program.)

• A device initializer. (Modern electronics—such as a smartphones and photocopiers—
have complex initialization routines. These have to finish so that the device
can actually be put to use.)

• The callbacks in JavaScript. (Because the language is single-threaded, not
relinquishing control means the event loop starves. When this happens in
a Web page, the browser usually intervenes after a while and asks whether
to kill the page—because otherwise the rest of the page (or even browser)
becomes unresponsive.)

• A configuration system, such as a build system or a linker. In Standard ML, the linker uses
essentially this language for
module linking specifications.Notice also an important difference between types and tests [section 27.5]: you

can’t test for termination!

27.6.3 Typing Recursion

What this says is, if we want potentially unbounded recursion, we must make it an
explicit part of the typed language. To illustrate this, we will add a simple rec
construct that recursively binds an identifier to a function. Thus, in the surface
syntax, one might write For convenience, we have also

added an if0 construct that
compares the test expression’s
value with 0.

(rec (S num (n num)
(if0 n

0
(n + (S (n + -1)))))

(S 10))
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for a summation function, where S is the name of the function, n its argument, the
first num the type of n and the second num the type returned by the function. The
expression (S 10) represents the use of this function to sum the numbers from
10 until 0.

How do we type such an expression? Clearly, we must have n bound in the
body of the function as we type it (but not, of course, in the use of the function,
due to static scope); this much we know from typing functions. But what about
S? Obviously it must be bound in the type environment when checking the use
(S 10)), and its type must be num -> num. But it must also be bound, to the
same type, when checking the body of the function. (Observe, too, that the type
returned by the body must match its declared return type.)

Now we can see how to break the shackles of the finiteness of the type. It
is certainly true that we can write only a finite number of ->’s in types in the
program source. However, this rule for typing recursion duplicates the -> in the
body that refers to itself, thereby ensuring that there is an inexhaustible supply of
applications.It’s our infinite quiver of

arrows. The code to implement this rule would be as follows. Assuming f is bound to
the function’s name, v its parameter’s name, at is the function’s argument type
and rt is its return type, b is the function’s body, and c is the function’s use:
<tc-recC> ::=

| recC(f, v, at, rt, b, c) =>
extended-env = xtend-t-env(tbind(f, funT(at, rt)), tnv)
if not(rt == tc(b, xtend-t-env(tbind(v, at), extended-env))):

raise("rec: function return type not correct")
else:

tc(c, extended-env);

27.7 Recursion in Data

We have seen how to type recursive programs, but this doesn’t yet enable us to
create recursive data. We already have one kind of recursive datum—the function
type—but this is built-in. We haven’t yet seen how developers can create their own
recursive datatypes.

27.7.1 Recursive Datatype Definitions

When we speak of allowing programmers to create recursive data, we are actually
talking about three different facilities at once:

• Creating a new type.
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• Letting instances of the new type have one or more fields.

• Letting some of these fields refer to instances of the same type.

In fact, once we allow the third, we must allow one more:

• Allowing non-recursive base-cases for the type.

This confluence of design criteria leads to what is commonly called an algebraic
datatype. For instance, consider the following definition of a binary tree of num-
bers: Later [chapter 29], we will

discuss how types can be
parameterized.data BinTree:

| leaf
| node (value :: Number,

left :: BinTree,
right :: BinTree)

end

Observe that without a name for the new datatype, BinTree, we would not have
been able to refer back ot it in node. Similarly, without the ability to have more
than one kind of BinTree, we would not have been able to define leaf, and
thus wouldn’t have been able to terminate the recursion. Finally, of course, we
need multiple fields (as in node) to construct useful and interesting data. In other
words, all three mechanisms are packaged together because they are most useful
in conjunction. (However, some langauges do permit the definition of stand-alone
structures. We will return to the impact of this design decision on the type system
later [REF].)

This style of data definition is sometimes also known as a sum of products. At
the outer level, the datatype offers a set of choices (a value can be a leaf or a
node). This corresponds to disjunction (“or”), which is sometimes written as a
sum (the truth table is suggestive). Inside each sum is a set of fields, all of which
must be present. These correspond to a conjunction (“and”), which is sometimes
written as a product (ditto).

That covers the notation, but we have not explained where this new type,
BinTree, comes from. It is obviously impractical to pretend that it is baked into
our type-checker, because we can’t keep changing it for each new recursive type
definition—it would be like modifying our interpreter each time the program con-
tains a recursive function! Instead, we need to find a way to make such definitions
intrinsic to the type language.
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27.7.2 Introduced Types

Now, what impact does a datatype definition have? First, it introduces a new type;
then it uses this to define several constructors, predicates, and selectors. For in-
stance, in the above example, it first introduces BinTree, then uses it to ascribe
the following types:

leaf :: BinTree # a constant, so no arrow
node :: Number, BinTree, BinTree -> BinTree
is-leaf :: BinTree -> Bool
is-node :: BinTree -> Bool
.value :: BinTree%(is-node) -> Number
.left :: BinTree%(is-node) -> BTnum
.right :: BinTree%(is-node) -> BTnum

Do Now!

In what two ways are the last three entries above fictitious?

Observe a few salient facts:

• Both the constructors create instances of BinTree, not something more
refined. We will discuss this design tradeoff later [REF].

• Both predicates consume values of type BinTree, not “any” value. This is
because the type system can already tell us what type a value is. Thus, we
only need to distinguish between the variants of that one type.

• The selectors really only work on instances of the relevant variant—e.g.,
.value can work only on instances of node, not on instances of leaf—
but we don’t have a way to express this in the static type system for lack of a
suitable static type. Thus, applying these can only result in a dynamic error,
not a static one caught by the type system.

There is more to say about recursive types, which we will return to shortly [REF].

27.7.3 Selectors

.value, .left, and .right are selectors: they select parts of the record by
name. But here are the two ways in which they are fictitious. First, syntactically:
in most languages with “dotted field access”, there is no such stand-alone operator
as .value: e.g., you cannot write .value(...). But even setting aside this
syntactic matter (which could be addressed by arguing that writing v.value is
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just an obscure syntax for applying this operator) the more interesting subtlety is
the semantic one.

Above, we have given a very particular type to .value. Suppose, however,
that this datatype was also defined in the same program:

data Payment:
| cash(value :: Number)
| card(number :: Number, value :: Number)

end

This too appears to define a .value operator with the type:

.value :: Payment(is-cash) -> Number

.value :: Payment(is-card) -> Number
or equivalently,

.value :: Payment -> Number
Will the real .value please stand up? How many .value operations are there?
Indeed, it would appear that this “operator” freely cross-cuts every datatype defi-
nition, and even every module boundary! These issues are not really

specific to types: the
cross-cutting nature of field
access is independent of it.
However, ascribing types forces
us to confront these issues,
because we cannot ignore the
difficulty of typing the
operation.

To put this in perspective, consider two other very different styles of handling
selectors:

• A characteristic of scripting languages is that objects are merely hash tables,
and all field access is turned into a hash-table reference on the string repre-
senting the field-name. Hence, o.f is just syntactic sugar for looking up the
value indexed by "f" in the dictionary associated with o.

• In Racket, the structure definitions such as

(struct cash (value))
(struct card (number value))

generate distinct selectors: in this case, cash-value and card-value,
respectively. Now there is no longer any potential for confusion, because
they have different names that can each have distinct types.

Compiling between these languages then highlights these distinctions. Compiling
from Pyret or Java to JavaScript is easy, because all field dereferences turn into
dictionary lookups. Compiling from (untyped) Pyret to Racket is especially easy
because the languages are so similar—until we get to dotted access. Then, assum-
ing we wish to compile Pyret data definitions to Racket’s corresponding structure
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definitions, the compiler would have to traverse the Pyret program to gather up
all fields with a common name, and turn them into a discriminating selector: for
instance, v.value might compile to Racket’s (->value v), where ->value
is defined as (given the above two data definitions):

(define (->value v)
(cond

[(node? v) (node-value v)]
[(cash? v) (cash-value v)]
[(card? v) (card-value v)]))

In contrast, going in the other direction is easy: (node-value v) would check
that v is indeed a node, and then access v.value.

27.7.4 Pattern-Matching and Desugaring

Once we have understood the names introduced by datatype definitions, and the
nature of selectors, the only thing left is to provide an account of pattern-matching.
For instance, we can write the expression

cases (BinTree) t:
| leaf => e1
| node(v, l, r) => e2

end

This simply expands into uses of the above predicates, and binding the pieces:

if is-leaf(t):
e1

else if is-node(t):
v = t.value
l = t.left
r = t.right
e2

end

In short, this can be done by desugaring, so pattern-matching does not need to be in
the core language. This, in turn, means that one language can have many different
pattern-matching mechanisms.

Except, that’s not quite so easy. Somehow, the desugaring that generates the
code above in terms of if needs to know that the three positional selectors for a
node are value, left, and right, respectively. This information is explicit in
the type definition but only implicitly present in the use of the pattern-matcher (that,
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indeed, being the point). Somehow this information must be communicated from
definition to use. Thus, the desugarer needs something akin to the type environment
to accomplish its task.

Observe, furthermore, that expressions such as e1 and e2 cannot be type-
checked—indeed, cannot even be reliable identified as expressions—until desugar-
ing expands the use of cases. Thus, desugaring depends on the type environment,
while type-checking depends on the result of desugaring. In other words, the two
are symbiotic and need to happen, not quite in “parallel”, but rather in lock-step.
What this implies is that building desugaring for a typed language when the syn-
tactic sugar makes assumptions about types is more intricate than doing so for an
untyped language.
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Chapter 28

Safety and Soundness

Now that we’ve had a first look at a type system, we’re ready to talk about the way A type system usually has three
components: a language of
types, a set of type rules, and an
algorithm that enforces these
rules. By presenting types via a
checking function we have
blurred the distinction between
the second and third of these,
but they should still be thought
of as intellectually distinct: the
former provides a declarative
description while the latter an
executable one. The distinction
becomes relevant when
implementing subtyping [REF].

in which types offer some notion of predictability, a notion called type soundness.
Intertwined with this are terms you have probably heard like safety (or type safety)
as well as others such as strong typing (and conversely weak typing) and memory
safety. We should understand all of them.

28.1 Safety

Many operations in a language are partial: given some domain over which they
are defined, they accept some but not all elements of the domain. For instance,
while addition—defined over numbers—is usually total, division is usually partial,
because division by zero is considered an error. In just about every language, the
function application operator is limited to applying only function values, i.e., an
application like 3(5)—the number 3 applied to one argument, 5—is illegal.

Of course, exactly whether an operator is partial or total is a matter of how we
define the domain. For instance, if we define the domain of division’s second ar-
gument as non-zero numbers, it becomes total; whereas if we consider the domain
of addition’s arguments as all values, it becomes partial. Also, some operations are
treated quite differently across different languages. For instance, the square-root
function, when applied to -1, can variously

• halt with an error,

• return a special value called “not-a-number” (NaN), or

• return an imaginary number (e.g., 0+1i in Scheme).

365



366 CHAPTER 28. SAFETY AND SOUNDNESS

Furthermore, it might be surprising to consider that an operation can work over all
values, but that is precisely what parametric polymorphism enables [chapter 29].

What matters, then, is whether an operation precludes any values at all or not.
If it does, then we can ask whether the language prevents it from being used with
any precluded values. If the language does prevent it, then we call the language
safe. If it does not, we call it unsafe. Of course, a language may be safe for some
operations and unsafe for others; usually we apply the term “safe” to a language as
a whole if all of its operations are safe.

A safe language offers a very important guarantee to programmers: that no
operation will be performed on meaningless data. Sticking with numeric addition,
in an unsafe language we might be permitted to add a number to a string, which will
produce some value dependent on the precise representation of strings and might
change if the representation of strings changes. (For instance, the string might be
zero-terminated or might record its length, which alters what the first word of the
string will be.) We might even be able to add a string to a function, a result that is
certainly nonsensical (what meaningful number does the first word of the machine
representation of a function represent?). Therefore, though safety does not at all
ensure that computations will be correct, at least it ensures they will be meaningful:
no nonsensical operations will have been performed.

Observe that we have not imposed any requirement whatsoever on how a lan-
guage achieves safety. Usually, safety can be achieved dynamically through run-
time checks: for instance, addition would check that its arguments are numeric,
division would also ensure its second argument is not zero, and so on. In addition,
a static type system can also ensure safety. Because this is a common source of
confusion, we should be clear: safety only means that operations are not applied
to meaningless values. It does not fix any particular implementation strategy for
ensuring the property.

We will return to the issue of implementations below [section 28.4]. But first,
we have some important foundational material to address.

28.2 “Untyped” Languages

It is common in popular writing to use the phrase “untyped” language. This is a
source of considerable confusion, so we should tease apart its meanings. There are
two different things it might mean, and these meanings are non-overlapping:

1. A language with no types at all. Of course all data have some representation
that gives them meaning, but it means there is only one type in the language,
and all data belong to that type. Furthermore, this datatype has no variants,
because that would introduce type-based discrimination. For instance, all
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data might be a byte, or a number, or a string, or some other single, distinctive
value. Typically, no operation can fail to take a particular kind of value,
because that might imply some kind of type distinction, which by definition
can’t exist. Note that this is a semantic notion of untypedness.

2. A language with a partitioning of its run-time values—e.g., numbers are dis-
tinct from functions—but without static annotations or checking. Note that
this is a syntactic notion of untypedness.

Virtually no contemporary language other than machine code—where the single
type is usually a “word”—exists. In contrast, there are many languages of the
latter kind (e.g., Python and Racket).

Because the two meanings are mutually contradictory, it would be useful to
have two different names for these. Some people use the terms latently typed or
dynamically typed for the latter category, to tell these apart.

Following modern convention, we will use the latter term, while recognizing
that some others consider the term typed to only apply to languages that have static
disciplines, so the phrase “dynamically typed” is regarded as an oxymoron. Note
that our preceding discussion gives us a way out of this linguistic mess. A dynam-
ically typed language that does not check types at run-time is not very interesting
(the “types” may as well not exist). In contrast, one that does check at run-time
already has a perfectly good name: safe [section 28.1]. Therefore, it makes more
sense to use the name dynamically safe for a language where all safety-checks are
performed at run-time, and (with a little loss of precision) statically safe for one
where as many safety-checks as possible are performed statically, with only the
undecidable ones relegated to run-time.

28.3 The Central Theorem: Type Soundness

We have seen earlier [section 27.6.2] that certain type languages can offer very
strong theorems about their programs: for instance, that all programs in the lan-
guage terminate. In general, of course, we cannot obtain such a guarantee (in-
deed, we added general recursion precisely to let ourselves write unbounded loops).
However, a meaningful type system—indeed, anything to which we wish to bestow
the noble title of a type system—ought to provide some kind of meaningful guaran-
tee that all typed programs enjoy. This is the payoff for the programmer: by typing
this program, she can be certain that certain bad things will certainly not happen.
Short of this, we have just a bug-finder; while it may be useful, it is not a sufficient
basis for building any higher-level tools (e.g., for obtaining security or privacy or
robustness guarantees).
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What theorem might we want of a type system? Remember that the type
checker runs over the static program, before execution. In doing so, it is essentially
making a prediction about the program’s behavior: for instance, when it states that
a particular complex term has type Number, it is predicting that when run, that
term will produce a numeric value. How do we know this prediction is sound, i.e.,
that the type checker never lies? Every type system should be accompanied by a
theorem that proves this.

There is a good reason to be suspicious of a type system, beyond general skep-
ticism. There are many differences between the way a type checker and an inter-
preter work:

• The type checker sees only program text, whereas the interpreter runs over
actual data.

• The type environment binds identifiers to types, whereas the interpreter’s
environment binds identifiers to values or locations.

• The type checker compresses (even infinite) sets of values into types, whereas
the interpreter treats the elements of these sets distinctly.

• The type checker always terminates, whereas the interpreter might not.

• The type checker passes over the body of each expression only once, whereas
the interpreter might pass over each body anywhere from zero to infinite
times.

Therefore, it is unwise to assume that these two will correspond, and historically,
they have often failed to do so.

The central result we wish to have for a given type-system is called soundness.
It says this. Suppose we are given an expression (or program) e. We type-check it
and conclude that its type is t. When we run e, let us say we obtain the value v.
Then v will also have type t.

The standard way of proving this theorem is to divide it in two parts, known as
progress and preservation. Progress says that if a term passes the type-checker, it
will be able to make a step of evaluation (unless it is already a value); preservation
says that the result of this step will have the same type as the original. If we
interleave these steps (first progress, then preservation; rinse and repeat), we can
conclude that the final answer will indeed have the same type as the original, so the
type system is indeed sound.

For instance, consider this expression: 5 + (2 * 3). It has the type Number.
In a sound type system, progress offers a proof that, because this term types, and is
not already a value, it can take a step of execution—which it clearly can. After one
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step the program reduces to 5 + 6. Sure enough, as preservation proves, this has
the same type as the original: Number. Progress again says this can take a step,
producing 11. Preservation again shows that this has the same type as the previous
expressions representing the program: Number. Now progress finds that we are at
an answer, so there are no steps left to be taken, and our answer is of the same type
as that given for the original expression.

However, this isn’t the entire story. There are two caveats:

1. The program may not produce an answer at all; it might loop forever. In this
case, the theorem strictly speaking does not apply. However, we can still
observe that every intermediate representation of the program has the same
type as the whole expression, so the program is computing meaningfully
even if it isn’t producing a value.

2. Any rich enough language has properties that cannot be decided statically
(and others that perhaps could be, but the language designer chose to put off
until run-time to reduce the burden on the programmer to make programs
pass the type-checker). When one of these properties fails—e.g., the array
index being within bounds—there is no meaningful type for the program.
Thus, implicit in every type soundness theorem is some set of published,
permitted exceptions or error conditions that may occur. The developer who
uses a type system implicitly signs on to accepting this set.

As an example of the latter set, the user of a typical typed language acknowledges
that vector dereference, list indexing, and so on may all yield exceptions. A different type system design

might make this set a parameter.The latter caveat looks like a cop-out. However, it is actually a strongly posi-
tive statement, in that says any exception not in this set will provably not be raised.
Of course, in languages designed with static types in the first place, it is not clear
(except by loose analogy) what these exceptions might be, because there would be
no need to define them. But when we retrofit a type system onto an existing pro-
gramming language—especially languages with only dynamic enforcement, such
as Racket or Python—then there is already a well-defined set of exceptions, and
the type-checker is explicitly stating that some set of those exceptions (such as
“non-function found in application position” or “method not found”) will simply
never occur. This is therefore the payoff that the programmer receives in return for
accepting the type system’s syntactic restrictions.

28.4 Types, Time, and Space

Even in a typed language, it is common to have several run-time checks. To explain
this, we will begin with an dynamically-typed account. Consider the following data

http://cs.brown.edu/~sk/Publications/Papers/Published/pqk-progressive-types/
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definition

data Tree:
| base
| node(v :: Number, l :: Tree, r :: Tree)

end

and a function that uses it:

fun size(t :: Tree) -> Number:
cases (Tree) t:

| base => 0
| node(_, l, r) => 1 + size(l) + size(r)

end
end

In an dynamically-typed language, every value t needs to hold a type tag that
indicates its type. When a value is passed to size, the implementation will check
that this is actually a Tree. Such a value will have additional variant tags that
indicate whether it is a base or node kind of Tree. This secondary tag will be
used to choose a branch of the cases expression.

Assume instead we are in a typed language. The type-checker will have en-
sured that there no non-Tree value could have been substituted for a Tree-typed
identifier. Therefore, there is no need for the type tag at all. However, the variantType tags would, however, still

be needed by the garbage
collector, though other
representations such as BIBOP
can greatly reduce their space
impact. The BIBOP scheme
appears to be due to Guy Steele,
who designed it for MACLISP
on the PDP-10 and wrote about
it in MIT AI Memo 420.

tags are still needed, and will be used to dispatch between the branches. In the
example, only one bit is needed to tell apart base and node values. This same
bit position can be reused to tell apart variants in some other type without causing
any confusion, because the type checker is responsible for keeping the types from
mixing.

In other words, if there are two different datatypes that each have two variants,
in the dynamically-typed world all these four variants require distinct representa-
tions. In contrast, in the typed world their representations can overlap across types,
because the static type system will ensure one type’s variants are never confused
for that the another. Thus, types have a genuine space (saving representation) and
time (eliminating run-time checks) performance benefit for programs.

Do Now!

It is conventional in computer science to have a Nspace-time tradeoff .
Instead, here we have a situation where we improve both space and time.
This seems almost paradoxical! How is this possible?

https://dspace.mit.edu/handle/1721.1/6278
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This dual benefit comes at some cost to the developer, who must convince
the static type system that their program does not induce type errors; due to the
limitations of decidability, even programs that might have run without error might
run afoul of the type system. Nevertheless, for programs for which this can be
done, types provide a notable saving.

28.5 Types Versus Safety

To conclude, we have now identified two classifications for language:

1. Whether or not a language is typed, i.e., has static type checks.

2. Whether or not a language’s run-time system is safe, i.e., performs residual
checks not done by a static system—of which there might not even be one).

Given two phenomena with two options each, this suggests there are four different
kinds of languages:

Safe Unsafe
Typed ML, Java C, C++
Not Typed Python, Racket machine code

The entry for machine code is a little questionable because the language isn’t
even typed, so there’s no classification to check statically. Similarly, there is ar-
guably nothing to check for in the run-time system, so it must best be described
as “not even unsafe”. However, in practice we do end up with genuine problems,
such as security vulnerabilities that arise from being able to jump and execute from
arbitrary locations that hold data.

That leaves the truly insidious corner, which languages like C and C++ inhabit.
Here, the static type system gives the impression that values are actually segregated
by type and checked for membership. And indeed they are, in the static world.
However, once a programmer passes the type-checker there are no run-time checks.
To compound the problem, the language offers primitives like arbitrary pointer
arithmetic, making it possible to interpret data of one kind as data of another. As a
result, we should have a special place of shame for languages that actively mislead
programmers.

Exercise

Construct examples of C or C++ interpreting data of one kind as data of
another kind.

Historically, people have sometimes used the phrase strong typing to reflect the
kind of type-checking that ML and Java use, and weak typing for the other kinds.
However, these phrases are at best poorly defined.
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Do Now!

If you have ever used the phrases “strong typing” or “weak typing”, define
them.

That’s what we thought. But thank you for playing.
Indeed, the phrases are not only poorly defined, they are also wrong, because

the problem is not with the “strength” of the type checker but rather with the nature
of the run-time system that backs them. The phrases are even more wrong because
they fail to account for whether or not a theorem backs the type system.

It is therefore better to express our intent by sticking to these concepts: safety,
typedness, and soundness. Indeed, we should think of this as a continuum. With
rare exceptions, we want a language that is safe. Often, we want a language that
is also typed. If it is typed, we would like it to be sound, so that we know that the
types are not lying. In all these cases, “strong” and “weak” typing do not have any
useful meaning.
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Parametric Polymorphism

Which of these is the same?

• List<String>
• List<String>
• List<String>

Actually, none of these is quite the same. But the first and third are very alike,
because the first is in Java and the third in ML, whereas the second, in C++, is
different. All clear? No? Good, read on!

29.1 Parameterized Types

Consider what would be the intended type of map in Pyret:

((A -> B), List<A> -> List<B>)
This says that for all types A and B, map consumes a function that generates B
values from A values, and a list of A values, and generates the corresponding list of

B values. Here, A and B are not concrete types; rather, each is aNtype variable
(in our terminology, these should properly be called “type identifiers” because they
don’t change within the course of an instantiation; however, we will stick to the
traditional terminology).

A different way to understand this is that there is actually an infinite family of
map functions. For instance, there is a map that has this type:

((Number -> String), List<Number> -> List<String>)
and another one of this type (nothing says the types have to be base types):

373
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((Number -> (Number -> Number)),
List<Number> -> List<(Number -> Number)>)

and yet another one of this type (nothing says A and B can’t be the same):

((String -> String), List<String> -> List<String>)
and so on. Because they have different types, they would need different names:
map-num-str, map-num-num-to-num, map-str-str, and so on. But that
would make them different functions, so we’d have to always refer to a specific
map rather than each of the generic one.

Obviously, it is impossible to load all these functions into our standard library:
there’s an infinite number of these! We’d rather have a way to obtain each of these
functions on demand. Our naming convention offers a hint: it is as if map takes
two type parameters in addition to its two regular value ones. Given the pair of
types as arguments, we can then obtain a map that is customized to that particular
type. This kind of parameterization over types is called parametric polymorphism.Not to be confused with the

“polymorphism” of objects,
which we will discuss
separately [REF]. 29.2 Making Parameters Explicit

In other words, we’re effectively saying that map is actually a function of perhaps
four arguments, two of them types and two of them actual values (a function and a
list). In a language with explicit types, we might try to write

fun map(A :: ???, B :: ???, f :: (A -> B), l :: List<A>)
-> List<B>:

...;
but this raises many questions:

• What goes in place of the ???? These are the types that are going to take
the place of A and B on an actual use. But if A and B are bound to types, then
what is their type?

• Do we really want to call map with four arguments every time we invoke it?

• Do we want to be passing types—which are static—at the same time as dy-
namic values?

• If these are types but they are only provided at run-time invocation, how can
we type-check clients, who need to know what kind of list they are getting?

The answers to these questions actually lead to a very rich space of polymorphic
type systems, most of which we will not explore here.
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Observe that once we start parameterizing, more code than we expect ends up
being parameterized. For instance, consider the type of the humble link. Its
type really is parametric over the type of values in the list (even though it doesn’t
actually depend on those values!—more on that in a bit [section 29.6]) so every use
of link must be instantiated at the appropriate type. For that matter, even empty
must be instantiated to create an empty list of the correct type! Of course, Java and
C++ programmers are familiar with this pain.

29.3 Rank-1 Polymorphism

Instead, we will limit ourselves to one particularly useful and tractable point in this
space, which is the type system of Standard ML, of earlier versions of Haskell,
roughly that of Java and C# with generics, and roughly that obtained using tem-
plates in C++. This language defines what is called predicative, rank-1, or prenex
polymorphism.

We first divide the world of types into two groups. The first group consists of
the type language we’ve used until now, but extended to include type variables;
these are called monotypes. The second group, known as polytypes, consists of
parameterized types; these are conventionally written with a ∀ prefix, a list of type
variables, and then a monotype expression that might use these variables. Thus,
the type of map would be:

∀ A, B : ((A -> B), List<A> -> List<B>)
Since “∀” is the logic symbol for “for all”, you would read this as: “for all types A
and B, the type of map is...”.

In rank-1 polymorphism, the type variables can only be substituted with mono-
types. (Furthermore, these can only be concrete types, because there would be
nothing left to substitute any remaining type variables.) As a result, we obtain a
clear separation between the type variable-parameters and regular parameters. We
don’t need to provide a “type annotation” for the type variables because we know
precisely what kind of thing they can be. This produces a relatively clean language
that still offers considerable expressive power. Impredicative languages erase

the distinction between
monotypes and polytypes, so a
type variable can be instantiated
with another polymorphic type.

Observe that because type variables can only be replaced with monotypes, they
are all independent of each other. As a result, all type parameters can be brought
to the front of the parameter list. In Pyret, for instance, the following defines a
polymorphic identity function:
<pyret-poly-id> ::=

fun<T> id(x :: T) -> T: x;
where T is the type parameter. At every use, we separate the provision of type
parameters from value parameters by using <...> for the type parameters and
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(...) for the values. In general, then, we can write types in the form ∀ tv, ... : t
where the tv are type variables and t is a monotype (that might refer to those vari-
ables). This justifies not only the syntax but also the name “prenex”. It will prove
to also be useful in the implementation.

29.4 Interpreting Rank-1 Polymorphism as Desugaring

The simplest implementation of this feature is to view it as a form of desugaring:
this is essentially the interpretation taken by C++. (Put differently, because C++
has a macro system in the form of templates, by a happy accident it obtains a
form of rank-1 polymorphism through the use of templates.) Consider the abve
polymorphic identity function (<pyret-poly-id>). Suppose the implementation is
that, on every provision of a type to the name, it replaces the type variable with the
given type in the body: given a concrete type for T, it yields a procedure of one
argument of type (T -> T) (where T is appropriately substituted). Thus we can
instantiate id at many different types—

id-num = id<Number>
id-str = id<String>
—thereby obtaining identity functions at each of those types:

check:
id-num(5) is 5
id-str("x") is "x"

end

In contrast, expressions like

id-num("x")
id-str(5)
will, as we would expect, fail to type-check (rather than fail at run-time).

However, this approach has two important limitations.

1. Let’s try to define a recursive polymorphic function, such as filter. Ear-
lier we have said that we ought to instantiate every single polymorphic value
(such as even cons and empty) with types, but to keep our code concise
we’ll focus just on type parameters for filter. Here’s the code:

fun<T> filter(pred :: (T -> Bool), l :: List<T>) -> List<T>:
cases (List) l:

| empty => empty
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| link(f, r) =>
if pred(f):

link(f, filter<T>(pred, r))
else:
filter<T>(pred, r);

end
end

Observe that at the recursive uses of filter, we must instantiate it with
the appropriate type.

This is a perfectly good definition. There’s just one problem. If we try to use
it—e.g.,

filter-num = filter<Number>

the implementation will not terminate. This is because the desugarer is re-
peatedly trying to make new copies of the code of filter at each recursive
call.

Exercise

If, in contrast, we define a local helper function that performs the re-
cursion, this problem can be made to disappear. Can you figure out
that version?

2. Consider two instantiations of the identity function. They would necessarily
be different because they are two different pieces of code residing at different
locations in memory. However, all this duplication is unnecessary! There’s Indeed, the use of parametric

polymorphism in C++ is
notorious for creating code
bloat.

absolutely nothing in the body of id, for instance, that actually depends on
the type of the argument. Indeed, the entire infinite family of id functions
can share just one implementation. The simple desugaring strategy fails to
provide this.

In other words, the desugaring based strategy, which is essentially an imple-
mentation by substitution, has largely the same problems we saw earlier with re-
gards to substitution as an implementation of parameter instantiation [section 26.2].
However, in other cases substitution also gives us a ground truth for what we ex-
pect as the program’s behavior. The same will be true with polymorphism, as we
will soon see.

Observe that one virtue to the desugaring strategy is that it does not require
our type checker to “know” about polymorphism. Rather, the core type language
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can continue to be monomorphic, and all the (rank-1) polymorphism is handled
entirely through expansion. This offers a cheap strategy for adding polymorphism
to a language, though—as C++ shows—it also introduces significant overheads.

Finally, though we have only focused on functions, the preceding discussion
applies equally well to data structures.

29.5 Alternate Implementations

There are other implementation strategies that don’t suffer from these problems.
We won’t go into them here, but the essence is to memoize [section 22.3] expan-
sion. Because we can be certain that, for a given set of type parameters, we will
always get the same typed body, we never need to instantiate a polymorphic func-
tion at the same type twice. This avoids the infinite loop. If we type-check the
instantiated body once, we can avoid checking at other instantiations of the same
type (because the body will not have changed). Furthermore, we do not need to
retain the instantiated sources: once we have checked the expanded program, we
can dispose of the expanded terms and retain just one copy at run-time. This avoids
all the problems discussed in the pure desugaring strategy shown above, while re-
taining the benefits.

Actually, we are being a little too glib. One of the benefits of static types is that
they enable us to pick more precise run-time representations. For instance, in most
languages a static type can tell us whether we have a 32-bit or 64-bit number, or for
that matter a 32-bit value or a 1-bit value (effectively, a boolean). A compiler can
then generate specialized code for each representation, taking advantage of how

the bits are laid out (for example, 32 booleans can use aNpacked representation
to fit into a single 32-bit word). Thus, after type-checking at each used type, the
polymorphic instantiator may keep track of all the special types at which a function
or data structure was used, and provide this information to the compiler for code-
generation. This will then result in several copies of the function, but only as many
as those for which the compiler can generate distinct, efficient representations—
which is usually fixed, and far fewer than the total number of types a program

can use. Furthermore, the decision to make these copies reflects aNspace-time
tradeoff .

29.6 Relational Parametricity

There’s one last detail we must address regarding polymorphism.This is a good time to reiterate
our recommendation to read
Pierce’s Types and
Programming Languages,
which covers this topic in the
depth it deserves.
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We earlier said that a function like cons doesn’t depend on the specific values
of its arguments. This is also true of map, filter, and so on. When map and
filter want to operate on individual elements, they take as a parameter another
function which in turn is responsible for making decisions about how to treat the
elements; map and filter themselves simply obey their parameter functions.

One way to “test” whether this is true is to substitute some different values
in the argument list, and a correspondingly different parameter function. That is,
imagine we have a relation between two sets of values; we convert the list elements
according to the relation, and the parameter function as well. The question is, will
the output from map and filter also be predictable by the relation? If, for some
input, this was not true of the output of map, then it must be that map somehow
affected the value itself, not just letting the function do it. But in fact this won’t
happen for map, or indeed most of the standard polymorphic functions.

Functions that obey this relational rule are called relationally parametric. This Read Wadler’s Theorems for
Free! and Reynolds’s Types,
Abstraction and Parametric
Polymorphism.

is another very powerful property that types give us, because they tell us there is
a strong limit on the kinds of operations such polymorphic functions can perform:
essentially, that they can drop, duplicate, and rearrange elements, but not directly
inspect and make decisions on them.

At first this sounds very impressive (and it is!), but on inspection you might re-
alize this doesn’t square with your experience. In Java, for instance, a polymorphic
method can still use instanceof to check which particular kind of value it ob-
tained at run-time, and change its behavior accordingly. Such a method would not
be relationally parametric! In fact, relational parametricity can equally be viewed On the Web, you will often find

this property described as the
inability of a function to inspect
the argument—which is not
quite right.

as a statement of the weakness of the language: that it permits only a very limited
set of operations. (You could still inspect the type—but not act upon what you
learned, which makes the inspection pointless. Therefore, a run-time system that
wants to simulate relational parametricity would have to remove operations like
instanceof as well as various proxies to it: for instance, adding 1 to a value
and catching exceptions would reveal whether the value is a number.) Neverthe-
less, it is a very elegant and surprising result, and shows the power of program
reasoning possible with rich type systems.
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Chapter 30

Type Inference

Until now, we have been studying programming languages that require a user to ex-
plicitly annotate their programs with types. In languages like Haskell and variants
of ML, however, a user can leave out annotations and the language has the ability
to automatically infer these annotations for them. For instance, a programmer can
write the equivalent of

fun f(x, y):
if x:

y + 1
else:

y - 1
end

end

and the system will automatically infer that the header of f ought to have been

fun f(x :: Boolean, y :: Number): ...
Newer languages like Scala and Typed Racket have this in more limited mea-

sure: a feature called local type inference. Here, however, we will study the more
traditional and powerful form.

30.1 Type Inference as Type Annotation Insertion

First, let’s understand what type inference is doing. Some people mistakenly think
of languages with inference as having no type declarations, with inference taking
their place. This is confused at multiple levels. For one thing, even in languages
with inference, programmers are free (and for documentation purposes, are often

381
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encouraged) to annotate types. Furthermore, in the absence of such declarations, it
is not quite clear what inference actually means.Sometimes, inference is also

undecidable and programmers
have no choice but to declare
some of the types. Finally,
writing explicit annotations can
greatly reduce indecipherable
error messages.

Instead, it is better to think of the underlying language as being fully, explicitly
typed, like the languages we have studied [chapter 27]. It is as if the programmer
had witten

fun f(x :: ___, y :: ___): ...
and some programming environment tool had filled in concrete annotations in place
of the ___’s: an especially sophisticated kind of desugaring, as it were. This
last remark helps us put inference in perspective: there are really two languages,
one with optional type annotations and the other with required ones. Once these
annotations are filled in, we are left with a traditional program that can be checked
using the methods we have already studied, though in practice this is not necessary
[section 30.3]. Thus, inference becomes simply a user convenience for alleviating
the burden of writing type annotations, but the language underneath is explicitly
typed.

30.2 Understanding Inference
For worked examples and more
details, see Chapter 30 of
Programming Languages:
Application and Interpretation.

Suppose we have an expression (or program) e written in an explicitly typed lan-
guage: i.e., e has type annotations everywhere they are required. Now suppose we
erase all annotations in e, and use a procedure infer to deduce them back.

Do Now!

What property do we expect of infer?

We could demand many things of it. One might be that it produces precisely
those annotations that e originally had. This is problematic for many reasons, not
least that e might not even type-check, in which case how could infer possibly
know what they were (and hence should be)? This might strike you as a pedantic
trifle: after all, if e didn’t type-check, how can erasing its annotations and filling
them back in make it do so? Since neither program type-checks, who cares?

Do Now!

Is this reasoning correct?

Suppose e is

lam(x :: Number) -> String: x end

http://www.plai.org/
http://www.plai.org/
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This procedure obviously fails to type-check. But if we erase the type annotations—
obtaining

lam(x): x end

—we equally obviously obtain a typeable function! Therefore, a more reasonable
demand might be that if the original e type-checks, then so must the version with
annotations replaced by inferred types. This one-directional implication is useful
in two ways:

1. It does not say what must happen if e fails to type-check, i.e., it does not
preclude a type inference algorithm that makes the faultily-typed identity
function above typeable.

2. More importantly, it assures us that we lose nothing by employing type in-
ference: no program that was previously typeable will now cease to be so.
That means we can focus on using explicit annotations where we want to,
but will not be forced to do so. Of course, this only holds if

inference is decidable.

We might also expect that both versions type to the same type, but that is not a
given: the function

lam(x :: Number) -> Number: x end

types to Number -> Number, whereas applying inference to it after erasing
types yields a much more general type, as we will see. Therefore, relating these
types and giving a precise definition of type equality is not trivial [section 29.6].

With these preliminaries out of the way, we are now ready to delve into the
mechanics of type inference. The most important thing to note is that our simple,
recursive-descent type-checking algorithm [section 27.4] will no longer work. That
was possible because we already had annotations on all function boundaries, so we
could descend into function bodies carrying information about those annotations
in the type environment. Sans these annotations, it is not clear how to descend. In
fact, it is not clear that there is any particular direction that makes more sense than
another.

All this information is in the function. But how do we extract it systematically
and in an algorithm that terminates and enjoys the property we have stated above?
We do this in two steps. First we generate constraints, based on program terms, on
what the types must be. Then we solve constraints to identify inconsistencies and
join together constraints spread across the function body. Each step is relatively
simple, but the combination creates magic.



384 CHAPTER 30. TYPE INFERENCE

30.2.1 Constraint Generation

Our goal, ultimately, is to find a type to fill into every type annotation position.
It will prove to be just as well to find a type for every expression. A moment’s
thought will show that this is likely necessary anyway: for instance, how can we
determine the type to put on a function without knowing the type of its body? It
is also sufficient, in that if every expression has had its type calculated, this will
include the ones that need annotations.

First, we must generate constraints to (later) solve. Constraint generation walks
the program source, emitting appropriate constraints on each expression, and re-
turns this set of constraints. It works by recursive descent mainly for simplicity; it
really computes a set of constraints, so the order of traversal and generation really
does not matter in principle—so we may as well pick recursive descent, which is
easy—though for simplicity we will use a list to represent this set.

What are constraints? They are simply statements about the types of expres-
sions. In addition, though the binding instances of variables are not expressions,
we must calculate their types too (because a function requires both argument and
return types). In general, what can we say about the type of an expression?

1. That it is related to the type of some identifier.

2. That it is related to the type of some other expression.

3. That it is a base type, such as numbers and Booleans.

4. That it is a constructed type such as a function, whose domain and range
types are presumably further constrained.

Thus, we define the following two datatypes:The name TyCHS is short for
“type (Ty) constraint (C)
left-or-right hand (H) side (S)”. data TyCon: tyeq(l :: TyCHS, r :: TyCHS) end

data TyCHS:
| t-expr(e :: TyExprC)
| t-con(name :: String, fields :: List<TyCHS>)

end

Note that we have collapsed both base and constructed types into one representa-
tion, t-con: a base type will have an empty list of fields, while a constructed type
will have a non-empty one corresponding to its arity. Concretely:

numeric-t-con = t-con("num", empty)
boolean-t-con = t-con("bool", empty)
fun mk-fun-t-con(a, r):
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t-con("fun", [list: a, r])
end

Now we can define the process of generating constraints:
<tyinf-generate> ::=

fun generate(e :: TyExprC) -> List<TyCon>:
cases (TyExprC) e:
<tyinf-generate-numC>
<tyinf-generate-plusC/multC>
<tyinf-generate-trueC/falseC>
<tyinf-generate-ifC>
<tyinf-generate-idC>
<tyinf-generate-fdC>
<tyinf-generate-appC>
end

end
When the expression is a number, all we can say is that we expect the type of

the expression to be numeric:
<tyinf-generate-numC> ::=
| numC(_) =>
[list: tyeq(t-expr(e), numeric-t-con)]

This might sound trivial, but what we don’t know is what other expectations are
being made of this expression by those containing it. Thus, there is the possibility
that some outer expression will contradict the assertion that this expression’s type
must be numeric, leading to a type error.

Identifiers do not constrain the program in any new way. The identifier will (if
bound) have its type constrained at the point of binding. Therefore, there are no
constraints: We are assuming that all bound

identifiers in the program have
distinct names, so there is no
danger of confusion between
two different identifiers.

<tyinf-generate-idC> ::=
| idC(s) =>
empty

If the context limits its type, then this expression’s type will automatically be lim-
ited, and must then be consistent with what its context expects of it.

Addition gives us our first look at a contextual constraint. For an addition
expression, we must first make sure we generate (and return) constraints in the
two sub-expressions, which might be complex. That done, what do we expect?
That each of the sub-expressions be of numeric type. (If the form of one of the
sub-expressions demands a type that is not numeric, this will lead to a type error.)
Finally, we assert that the entire expression’s type is itself numeric. Because the
treatment of multiplication is identical, we abstract over both:



386 CHAPTER 30. TYPE INFERENCE

<tyinf-generate-plusC/multC> ::=
| plusC(l, r) => generate-arith-binop(e, l, r)
| multC(l, r) => generate-arith-binop(e, l, r)

where the interesting work is done by the abstraction:

fun generate-arith-binop(e :: TyExprC, l :: TyExprC, r :: TyExprC) -> List<TyCon>:
[list: tyeq(t-expr(e), numeric-t-con),

tyeq(t-expr(l), numeric-t-con),
tyeq(t-expr(r), numeric-t-con)] +

generate(l) +
generate(r)

end

Like numbers, Boolean values constrain the current expression to be of Boolean
type:
<tyinf-generate-trueC/falseC> ::=

| trueC =>
[list: tyeq(t-expr(e), boolean-t-con)]

| falseC =>
[list: tyeq(t-expr(e), boolean-t-con)]

The case for the conditional is again interesting. We must make sure the conditional
expression is of Boolean type, and that the two brances have the same type:
<tyinf-generate-ifC> ::=

| ifC(cnd, thn, els) =>
[list: tyeq(t-expr(cnd), boolean-t-con),

tyeq(t-expr(thn), t-expr(els)),
tyeq(t-expr(thn), t-expr(e))] +

generate(cnd) + generate(thn) + generate(els)

Exercise

What happens if you leave out the

tyeq(t-expr(thn), t-expr(e))
?

Exercise

What if we instead wrote

tyeq(t-expr(els), t-expr(e))
? Would it make a difference?
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Now we get to the other two interesting cases, function declaration and appli-
cation. In both cases, we must remember to generate and return constraints of the
sub-expressions.

In a function definition, the type of the function is a function type, whose ar-
gument type is that of the formal parameter, and whose return type is that of the
body:
<tyinf-generate-fdC> ::=

| fdC(a, b) =>
[list:

tyeq(t-expr(e),
mk-fun-t-con(t-expr(idC(a)), t-expr(b)))] +

generate(b)

Do Now!

Do you see why we have idC(a) instead of just a?

This is necessary to make the types work out: a on its own is just bound to a string,
which is not a TyExprC. Of course, the binding positions of functions are not
truly identifiers, so we’re playing fast-and-loose here. In this particular context,
we can get away with it, and it saves us having to come up with a whole new
representation of programs.

Finally, we have applications. We cannot directly state a constraint on the type
of the application. Rather, we can say that the function in the application position
must consume arguments of the actual parameter expression’s type, and return
types of the application expression’s type:
<tyinf-generate-appC> ::=

| appC(f, a) =>
[list:
tyeq(t-expr(f),

mk-fun-t-con(t-expr(a), t-expr(e)))] +
generate(f) +
generate(a)

And that’s it! We have finished generating constraints; now we just have to
solve them.

30.2.2 Constraint Solving Using Unification

The process used to solve constraints is known as unification. A unifier is given a
set of equations. Each equation maps a variable to a term, whose datatype is above.
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For our purposes, the goal of unification is to generate a substitution, or map-
ping from variables to terms that do not contain any variables. This should sound
familiar: we have a set of simultaneous equations in which each variable is used
linearly; such equations are solved using Gaussian elimination. In that context, we
know that we can end up with systems that are both under- and over-constrained.
The same thing can happen here, as we will soon see.

The unification algorithm works iteratively over the set of constraints. Because
each constraint equation has two terms and each term can be one of two kinds,
there are four cases to cover.

The algorithm begins with the set of all constraints, and the empty substitution.
Each constraint is considered once and removed from the set, so in principle the
termination argument should be utterly simple, but it will prove to be slightly more
tricky. As constraints are disposed, the substitution set tends to grow. When all
constraints have been disposed, unification returns the final substitution set.

For a given constraint, the unifier examines the left-hand-side of the equation.
If it is a variable, it is now ripe for elimination. The unifier adds the variable’s right-
hand-side to the substitution and, to truly eliminate it, replaces all occurrences of
the variable in the substitution with the this right-hand-side.It is worth noting that because

the constraints are equalities,
eliminating a variable is
tantamount to associating it
with the same set as whatever
replaces it. In other words, we
can use union-find
[section 22.1] to implement this
process efficiently, though if we
need to backtrack during
unification (as we do for logic
programming [REF]), this
becomes much more tricky.

Do Now!

Did you notice the subtle error above?

The subtle error is this. We said that the unifier eliminates the variable by
replacing all instances of it in the substitution. However, that assumes that the
right-hand-side does not contain any instances of the same variable. Otherwise we
have a circular definition, and it becomes impossible to perform this particular sub-
stitution. For this reason, unifiers include a occurs check: a check for whether the
same variable occurs on both sides and, if it does, decline to unify. For simplicity
we will ignore this here.

Do Now!

Construct a term whose constraints would trigger the occurs check.

Do you remember ω [section 26.4]?
Let us now implement unification. For simplicity, we will use a list of type

constraints as the representation of the subtitution.As you read this, keep in mind
that unification is a generic
procedure, completely
independent of type-inference:
indeed, the unification
algorithm was invented before
and spurred the creation of the
type-inference process.

Exercise

If we use type constraints to represent the substitution, what invariant would
we expect the computed set of constraints to have?
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It will be convenient to have a helper function that takes the current substitution
as an accumulated parameter. Let’s therefore include it, and get the easy case out
of the way:

<tyinf-unify> ::=
fun unify(cs :: List<TyCon>) -> List<TyCon>:
fun help(shadow cs :: List<TyCon>, sub :: List<TyCon>) -> List<TyCon>:

cases (List) cs:
| empty => sub
| link(f, r) =>
<tyinf-unify-link>

end
end
help(cs, empty)

end
There are four cases we need to consider, because either side can be a t-expr

or t-con:

• If both sides are t-expr’s, then we simply replace one with the other (this
is the “variable elimination” case of the Gaussian procedure). We must per-
form this replacement everywhere: in the remaining terms but also in the
substitution already performed.

Exercise

What happens if we miss doing this replacement in one or the other?

• If one side is a t-expr and the other a t-con, then we have resolved that
expression’s type to a concrete type. Record this and substitute.

• There are two cases of a t-expr and t-con: for simplicity, we handle one
case and in the other case, rewrite the problem to the former case and recur. This swapping of sides is legal

because these are equational
constraints.• If we have to unify two constructors, then they had better be the same con-

structor! If they are not, we have a type error. If they are, then we recur on
their parameters.

Here it is in code:
<tyinf-unify-link> ::=
lhs = f.l
rhs = f.r
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ask:
| is-t-expr(lhs) and is-t-expr(rhs) then:

help(subst(lhs, rhs, r), link(f, subst(lhs, rhs, sub)))
| is-t-expr(lhs) and is-t-con(rhs) then:

help(subst(lhs, rhs, r), link(f, subst(lhs, rhs, sub)))
| is-t-con(lhs) and is-t-expr(rhs) then:

help(link(tyeq(rhs, lhs), r), sub)
| is-t-con(lhs) and is-t-con(rhs) then:

if lhs.name == rhs.name:
help(map2(tyeq, lhs.fields, rhs.fields) + r, sub)

else:
raise('type error: ' + lhs.name + ' vs. ' + rhs.name)

end
end
In terms of proving termination, note that the last two cases do not shrink the

input: the third keeps it the same, while the fourth in some cases grows it.
The unifier depends on:

fun subst(to-rep :: TyCHS%(is-t-expr), rep-with :: TyCHS, in :: List<TyCon>)
-> List<TyCon>:

cases (List) in:
| empty => empty
| link(f, r) =>

lhs = f.l
rhs = f.r
link(

tyeq(
if lhs == to-rep: rep-with else: lhs end,
if rhs == to-rep: rep-with else: rhs end),

subst(to-rep, rep-with, r))
end

end

Exercise

There is a subtle bug in the above implementation of unification. It assumes
that two textually identical expressions must have the same type. Construct
a counter-example to show that this is not true. Then fix the implementation
(consider using reference rather than structural equality [section 19.1]).
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Exercise

The algorithm above is rather naive. Given a choice, we would rather see the
types of identifiers rather than those of expressions. Modify the algorithm to
bias in this direction.

Exercise

The output of the above algorithm is unsatisfying: a set of (solved) con-
straints rather than an “answer”. Extract the type of the top-level expression,
and “pretty-print” it in terms of only type constants, referring to expressions
only when necessary (section 30.4).

Exercise

Prove the termination of this algorithm. Make an argument based on the size
of the constraint set and on the size of the substitution.

Exercise

Augment this implementation with the occurs check.

Exercise

Use union-find to optimize this implementation. Measure the performance
gain.

With this, we are done. Unification produces a substitution. We can now tra-
verse the substitution and find the types of all the expressions in the program, then
insert the type annotations accordingly.

30.3 Type Checking and Type Errors

A theorem, which we will not prove here, dictates that the success of the above pro-
cess implies that the program would have typed-checked, so we need not explicitly
run the type-checker over this program.

Observe, however, that the nature of a type error has now changed dramati-
cally. Previously, we had a recursive-descent algorithm that walked a expressions
using a type environment. The bindings in the type environment were programmer-
declared types, and could hence be taken as (intended) authoritative specifications



392 CHAPTER 30. TYPE INFERENCE

of types. As a result, any mismatch was blamed on the expressions, and reporting
type errors was simple (and easy to understand). Here, however, a type error is a
failure to notify. The unification failure is based on events that occur at the conflu-
ence of two smart algorithms—constraint generation and unification—and hence
are not necessarily comprehensible to the programmer. In particular, the equational
nature of these constraints means that the location reported for the error, and the
location of the “true” error, could be quite far apart. As a result, producing better
error messages remains an active research area.In practice the algorithm will

maintain metadata on which
program source terms were
involved and probably on the
history of unification, to be able
to trace errors back to the
source program.

30.4 Over- and Under-Constrained Solutions

Remember that the constraints may not precisely dictate the type of all variables. If
the system of equations is over-constrained, then we get clashes, resulting in type
errors. If instead the system is under-constrained, that means we don’t have enough
information to make definitive statements about all expressions. For instance, in the
expression (fun (x) x)we do not have enough constraints to indicate what the
type of x, and hence of the entire expression, must be. This is not an error; it simply
means that x is free to be any type at all. In other words, its type is “the type of x
-> the type of x” with no other constraints. The types of these underconstrained
identifiers are presented as type variables, so the above expression’s type might be
reported as (A -> A).

The unification algorithm actually has a wonderful property: it automatically
computes the most general types for an expression, also known as principal types.
That is, any actual type the expression can have can be obtained by instantiating
the inferred type variables with actual types. This is a remarkable result: in another
example of computers beating humans, it says that no human can generate a more
general type than the above algorithm can!

30.5 Let-Polymorphism

Unfortunately, though these type variables are superficially similar to the polymor-
phism we had earlier [chapter 29], they are not. Consider the following program:
(let ([id (fun (x) x)])

(if (id true)
(id 5)
(id 6)))

If we write it with explicit type annotations, it type-checks:
(if (id<Boolean> true)

(id<Number> 5)
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(id<Number> 6))
However, if we use type inference, it does not! That is because the A’s in the type
of id unify either with Boolean or with Number, depending on the order in
which the constraints are processed. At that point id effectively becomes either a
(Boolean -> Boolean) or (Number -> Number) function. At the use
of id of the other type, then, we get a type error!

The reason for this is because the types we have inferred through unification are
not actually polymorphic. This is important to remember: just because you type
variables, you don’t necessarily have polymorphism! The type variables could
be unified at the next use, at which point you end up with a mere monomorphic
function. Rather, true polymorphism only obtains when you can instantiate type
variables.

In languages with true polymorphism, then, constraint generation and unifica-
tion are not enough. Instead, languages like ML and Haskell implement something
colloquially called let-polymorphism. In this strategy, when a term with type vari-
ables is bound in a lexical context, the type is automatically promoted to be a
quantified one. At each use, the term is effectively automatically instantiated.

There are many implementation strategies that will accomplish this. The most
naive (and unsatisfying) is to merely copy the code of the bound identifier; thus,
each use of id above gets its own copy of (fun (x) x), so each gets its own
type variables. The first might get the type (A -> A), the second (B -> B),
the third (C -> C), and so on. None of these type variables clash, so we get
the effect of polymorphism. Obviously, this not only increases program size, it
also does not work in the presence of recursion. However, it gives us insight into
a better solution: instead of copying the code, why not just copy the type? Thus
at each use, we create a renamed copy of the inferred type: id’s (A -> A)
becomes (B -> B) at the first use, and so on, thus achieving the same effect
as copying code but without its burdens. Because all these strategies effectively
mimic copying code, however, they only work within a lexical context.
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Chapter 31

Mutation: Structures and
Variables

31.1 Separating Meaning from Notation

Which of these is the same?

• f = 3
• o.f = 3
• f = 3

Assuming all three are in Java, the first and third could behave exactly like
each other or exactly like the second: it all depends on whether f is a local identifier
(such as a parameter) or a field of the object (i.e., the code is really this.f = 3).

In either case, we are asking the evaluator to permanently change the value
bound to f. This has important implications for other observers. Until now, for
a given set of inputs, a computation always returned the same value. Now, the
answer depends on when it was invoked: above, it depends on whether it was
invoked before or after the value of f was changed. The introduction of time has
profound effects on predicting the behavior of programs.

However, there are really two quite different notions of change buried in the
uniform syntax above. Changing the value of a field (o.f = 3 or this.f = 3)
is extremely different from changing that of an identifier (f = 3 where f is bound
as a parameter or a local inside the method, not by the object). We will explore
these in turn. We’ll tackle fields below, and return to identifiers in section 31.4.

To study both these features, we will as usual write interpreters. However, to
make sure we expose their essence, we will write these interpreters without the
use of state. That is, we will do something quite remarkable: write mutation-free
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interpreters that faithfully mimic languages with mutation. The key to this will be
a special pattern of passing information around in a computation.

31.2 Mutation and Closures

Before we proceed, make sure you’ve understood boxes (section 21.1), and espe-
cially the interaction between mutation and closures (section 21.5).

The interaction with closures (and their first-cousin, objects [chapter 32]) is
particularly subtle. Consider the following situation: you are writing a GUI programWe first heard this example

described by Corky Cartwright. to implement a calculator. The GUI element corresponding to each calculator button
needs a callback—essentially a closure—that, when invoked, will report that that
particular button was pressed. Therefore, it is tempting to initialize this as follows:
for(var i = 0; i < 10; i++) {

button[i] = function() { return i; }
}
This pseudo-code translates with minimal change to any number of languages, with
and without static types, ranging from Python to Swift. (Assume button has been
initialized appropriately.)

Notice that the closures created above all have i in their environment. Now let
us try to inspect the behavior of these closures:
for(var i = 0; i < 10; i++) {

println(button[i]())
}
That is, we extract the ith closure from button and apply it to no arguments.
This evaluates the return i statement.

We might have liked this to produce the sequence of values 0, 1, 2, and so on
through to 9. In fact, however, it produces ten outputs, all the same: 10.

Do Now!

Do you see why? How would you fix this?

The problem is that i in the for loop is allocated only once. Therefore, all the
closures share the same i. Because that value had to become 10 for the for loop
to terminate, all the closures report the value 10.

With traditional for loops, there is no obvious way out of this problem. This
seemingly confusing behavior often confounds programmers new to languages that
make extensive use of closures. Because they cannot change the behavior of for
loops, many languages have introduced new versions of for (or new keywords
inside for) to address this problem. The solution is always to allocate a fresh i on
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each iteration, so that each closure is over a different variable; the looping construct
copies the previous value of i as the initial value of the new one before applying
the updater (in this case, i++) and then performing the comparison and loop body.

Observe that when programming functionally, the desired behavior comes for
free. For instance:

funs =
for map(i from range(0, 10)):

lam(): i end
end

check:
map(lam(c): c() end, funs)

is range(0, 10)
end

It is easier to see why the definition of funs works by writing the use of map more
explicitly:

funs =
map(

lam(i):
lam():

i
end

end,
range(0, 10))

Thus, we can see that on each iteration the outer lam(i): ... is applied, allo-
cating a new i, which is the one closed over by the inner lam(): ....

31.3 Mutable Structures

Equipped with these examples, let us now return to adding mutation to the lan-
guage in the form of mutable structures (which are also a good basis for objects
with mutable members). Besides mutable structures themselves, note that we must
sometimes perform mutation in groups (e.g., removing money from one bank ac-
count and depositing it in another). Therefore, it is useful to be able to sequence a
group of mutable operations. We will call this begin: it evaluates its sub-terms
terms in order and returns the value of the last one.
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Exercise

Why does it matter whether begin evaluates its sub-terms in some particu-
lar, specified order?

Does it matter what this order is?

Exercise

Define begin by desugaring into let (and hence into anonymous func-
tions).

This is an excellent illustration
of the non-canonical nature of
desugaring. We’ve chosen to
add to the core a construct that
is certainly not necessary. If our
goal was to shrink the size of
the interpreter—perhaps at
some cost to the size of the
input program—we would not
make this choice. But our goal
here is to understand key ideas
in languages, so we choose the
combination of features that
will be most instructive.

Even though it is possible to eliminate begin as syntactic sugar, it will prove
extremely useful for understanding how mutation works. Therefore, we will add a
simple, two-term version of sequencing (seqC) to the core. In turn, because our
core language is becoming unwieldy, we will drop Boolean values and conditional
values except where their presence makes things more interesting: and it does not
here.

31.3.1 Extending the Language Representation

First, let’s extend our core language datatype:

data ExprC:
| numC(n :: Number)
| plusC(l :: ExprC, r :: ExprC)
| multC(l :: ExprC, r :: ExprC)
| idC(s :: String)
| appC(f :: ExprC, a :: ExprC)
| fdC(arg :: String, body :: ExprC)
| boxC(v :: ExprC)
| unboxC(b :: ExprC)
| setboxC(b :: ExprC, v :: ExprC)
| seqC(b1 :: ExprC, b2 :: ExprC)

end

Observe that in a setboxC expression, both the box position and its new value
are expressions. The latter is unsurprising, but the former might be. It means we
can write programs such as this in corresponding Pyret:

fun make-box-list():
b0 = box(0)
b1 = box(1)
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l = [list: b0, b1]
index(l, 0)!{v : 1}
index(l, 1)!{v : 2}
l

where:
l = make-box-list()
index(l, 0)!v is 1
index(l, 1)!v is 2

end

This evaluates to a list of boxes, the first containing 1 and the second 2. Observe
that in each of the mutation statements, we are using a complex expression—e.g.,
index(l, 0)—rather than a literal or an identifier to obtain the box before mu-
tating it (!{v : 1}). the first argument to the This is precisely analogous to
languages like Java, where one can (taking some type liberties) write

public static void main (String[] args) {
Box<Integer> b0 = new Box<Integer>(0);
Box<Integer> b1 = new Box<Integer>(1);

ArrayList<Box<Integer>> l = new ArrayList<Box<Integer>>();
l.add(b0);
l.add(b1);

l.get(0).set(1);
l.get(1).set(2);

}
Notice that l.get(0) is a compound expression being used to find the appropri-
ate box, and evaluates to the box object on which set is invoked.

For convenience, we will assume that we have implemented desugaring to pro-
vide us with (a) let and (b) if necessary, more than two terms in a sequence
(which can be desugared into nested sequences). We will also sometimes write ex-
pressions in the original Pyret syntax, both for brevity (because the core language
terms can grow quite large and unwieldy) and so that you can run these same terms
in Pyret and observe what answers they produce. As this implies, we are taking
the behavior in Pyret—which mutable structures are similar in behavior to those of
just about every mainstream language with mutable objects and structures—as the
reference behavior.
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31.3.2 The Interpretation of Boxes

First, because we’ve introduced a new kind of value, the box, we have to update
the set of values:
<mut-str-value/1> ::=
data Value:

| numV(n :: Number)
| closV(f :: ExprC%(is-fdC), e :: Env)
| boxV(v :: Value)

end
Now let’s begin by reproducing our current interpreter:
<mut-str-interp/1> ::=
fun interp(e :: ExprC, nv :: Env) -> Value:

cases (ExprC) e:
| numC(n) => numV(n)
| plusC(l, r) => plus-v(interp(l, nv), interp(r, nv))
| multC(l, r) => mult-v(interp(l, nv), interp(r, nv))
| idC(s) => lookup(s, nv)
| fdC(_, _) => closV(e, nv)
| appC(f, a) =>

clos = interp(f, nv)
arg-val = interp(a, nv)
interp(clos.f.body,

xtnd-env(bind(clos.f.arg, arg-val), clos.e))
<mut-str-interp/1-boxC>
<mut-str-interp/1-unboxC>
<mut-str-interp/1-seqC>

end
end

(You’ll soon see why the setboxC case is missing.)
Two of these cases should be easy. When we’re given a box expression, we

simply evaluate the content and return it wrapped in a boxV:
<mut-str-interp/1-boxC> ::=
| boxC(v) => boxV(interp(v, nv))

Similarly, extracting a value from a box is easy:
<mut-str-interp/1-unboxC> ::=

| unboxC(b) => interp(b, nv).v
By now, you should be constructing a healthy set of test cases to make sure these
behave as you’d expect.
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Of course, we haven’t done any hard work yet. All the interesting behavior is,
presumably, hidden in the treatment of setboxC. It may therefore surprise you
that we’re going to look at seqC first instead (and you’ll see why we included it
in the core).

Let’s take the most natural implementation of a sequence of two instructions:
<mut-str-interp/1-seqC> ::=

| seqC(b1, b2) =>
b1-value = interp(b1, nv)
b2-value = interp(b2, nv)
b2-value

That is, we evaluate the first term, then the second, and return the result of the
second.

You should immediately spot something troubling. We bound the result of
evaluating the first term, but didn’t subsequently do anything with it. That’s okay:
presumably the first term contained a mutation expression of some sort, and its
value is uninteresting. Thus, an equivalent implementation might be this:
<mut-str-interp/1-seqC/2> ::=

| seqC(b1, b2) =>
interp(b1, nv)
interp(b2, nv)

Not only is this slightly dissatisfying in that it just uses Pyret’s sequential behavior,
it can’t possibly be right! This can only work only if the result of the mutation is
being stored somewhere. But because our interpreter only computes values and
does not perform any mutation itself—because that would be cheating—any mu-
tations in interp(b1, nv) are completely lost. This is obviously not what we
want. (And therefore, we’re not going to even attempt to define what to do in the
setbox case.)

31.3.3 Can the Environment Help?

Here is an input example that can help:
(let ([b (box 0)])

(begin (begin (set-box! b (+ 1 (unbox b)))
(set-box! b (+ 1 (unbox b))))

(unbox b)))
In Racket, this evaluates to 2.

Exercise

Represent this expression in ExprC.
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Let’s consider the evaluation of the inner sequence. In both cases, the expres-
sion (the representation of (set-box! ...)) is exactly identical. Yet some-
thing is changing underneath, because this causes the value of the box to go from
0 to 2! We can “see” this even more clearly if instead we evaluate
(let ([b (box 0)])

(+ (begin (set-box! b (+ 1 (unbox b)))
(unbox b))

(begin (set-box! b (+ 1 (unbox b)))
(unbox b))))

which evaluates to 3. Here, the two calls to interp in the rule for addition are
evaluating exactly the same textual expression in both cases. Yet somehow the
effects from the left branch of the addition are being felt in the right branch.Spukhafte Fernwirkung.

If the interpreter is being given precisely the same expression, how can it pos-
sibly avoid producing precisely the same answer? The most obvious way is if the
interpreter’s other parameter, the environment, were somehow different. As of now
the exact same environment is sent to both both branches of the sequence and both
arms of the addition, so our interpreter—which produces the same output every
time on a given input—cannot possibly produce the answers we want.

Here is what we know so far:

1. We must somehow make sure the interpreter is fed different arguments on
calls that are expected to potentially produce different results.

2. We must return from the interpreter some record of the mutations made when
evaluating its argument expression.

Because the expression is what it is, the first point suggests that we might try to
use the environment to reflect the differences between invocations. In turn, the
second point suggests that each invocation of the interpreter should also return the
environment, so it can be passed to the next invocation. So the interpreter should
presumably be modified to return both the value and an updated environment. That
is, the interpreter consumes an expression and environment; it evaluates in that
environment, updating it as it proceeds; when the expression is done evaluating, the
interpreter returns the answer (as it did before), along with an updated environment,
which in turn is sent to the next invocation of the interpreter. And the treatment of
setboxC would somehow impact the environment to reflect the mutation.

Before we dive into the implementation, however, we should consider the con-
sequences of such a change. The environment already serves an important purpose:
it holds deferred substitutions. In that respect, it already has a precise semantics—
given by substitution—and we must be careful to not alter that. One consequence
of its tie to substitution is that it is also the repository of lexical scope information.



31.3. MUTABLE STRUCTURES 403

If we were to allow the extended environment escape from one branch of addition
and be used in the other, for instance, consider the impact on the equivalent of the
following program:
(+ (let ([b (box 0)])

1)
b)

It should be evident that this program has an error: b in the right branch of the
addition is unbound (the scope of the b in the left branch ends with the closing of
the let—if this is not evident, desugar the above expression to use functions). But
the extended environment at the end of interpreting the let clearly has b bound in
it.

Exercise

Work out the above problem in detail and make sure you understand it.

You could try various other related proposals, but they are likely to all have
similar failings. For instance, you may decide that, because the problem has to
do with additional bindings in the environment, you will instead remove all added
bindings in the returned environment. Sounds attractive? Did you remember we
have closures?

Exercise

Consider the representation of the following program:
(let ([a (box 1)])

(let ([f (fun x (+ x (unbox a)))])
(begin

(set-box! a 2)
(f 10))))

What problems does this example cause?

Rather, we should note that while the constraints described above are all valid,
the solution we proposed is not the only one. Observe that neither condition actu-
ally requires the environment to be the responsible agent. Indeed, it is quite evident
that the environment cannot be the principal agent. We need something else.

31.3.4 Welcome to the Store

The preceding discussion tells us that we need two repositories to accompany the
expression, not one. One of them, the environment, continues to be responsible for
maintaining lexical scope. But the environment cannot directly map identifiers to
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their value, because the value might change. Instead, something else needs to be
responsible for maintaining the dynamic state of mutated boxes. This latter data
structure is called the store.

Like the environment, the store is a partial map. Its domain could be any ab-
stract set of names, but it is natural to think of these as numbers, meant to stand for
memory locations. This is because the store in the semantics maps directly onto
(abstracted) physical memory in the machine, which is traditionally addressed by
numbers. Thus the environment maps names to locations, and the store maps loca-
tions to values:

data Binding:
| bind(name :: String, location :: Number)

end

type Env = List<Binding>
mt-env = empty
xtnd-env = link

data Storage:
| cell(location :: Number, value :: Value)

end

type Store = List<Storage>
mt-sto = empty
xtnd-sto = link
We’ll also equip ourselves with a function to look up values in the store, just as we
already have one for the environment (which now returns locations instead):

fun lookup(s :: String, nv :: Env) -> Number: ...
fun fetch(n :: Number, st :: Store) -> Value: ...

Exercise

Fill in the bodies of lookup and fetch.

With this, we can refine our notion of values to the correct one:
<mut-str-value> ::=

data Value:
| numV(n :: Number)
| closV(f :: ExprC, e :: Env)
| boxV(l :: Number)

end
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31.3.5 Interpreting Boxes

Now we have something that the interpreter can return, updated, reflecting muta-
tions during the evaluation of the expression, without having to change the envi-
ronment in any way. Because a function can return only one value, we will use an
ad hoc object with two fields: v for the value (which will (effectively) be the same
as the one the interpreter originally returned), and st for the (potentially) updated
store. We will use the following helper function to assemble the result:

fun ret(v :: Value, st :: Store): {v : v, st : st} end

Exercise

Why do we say “effectively” and “potentially” above?
Hint for “effectively”: look at closures.

Thus our interpreter becomes:
<mut-str-interp> ::=
fun interp(e :: ExprC, nv :: Env, st :: Store):
cases (ExprC) e:
<mut-str-interp/numC>
<mut-str-interp/plusC>
<mut-str-interp/idC>
<mut-str-interp/fdC>
<mut-str-interp/appC>
<mut-str-interp/boxC>
<mut-str-interp/unboxC>
<mut-str-interp/setboxC>
<mut-str-interp/seqC>

end
end

The easiest one to dispatch is numbers. Remember that we have to return the
store reflecting all mutations that happened while evaluating the given expression.
Because a number is a constant, no mutations could have happened, so the returned
store is the same as the one passed in:
<mut-str-interp/numC> ::=

| numC(n) => ret(numV(n), st)
A similar argument applies to closure creation; observe that we are speaking of the
creation, not use, of closures:
<mut-str-interp/fdC> ::=

| fdC(_, _) => ret(closV(e, nv), st)
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Identifiers are almost as straightforward, though if you are simplistic, you’ll get a
type error that will alert you that to obtain a value, you must now look up both in
the environment and in the store:
<mut-str-interp/idC> ::=

| idC(s) => ret(fetch(lookup(s, nv), st), st)
Notice how lookup and fetch compose to produce the same result that lookup
alone produced before.

Now things get interesting.
Let’s take sequencing. Clearly, we need to interpret the two terms.

<mut-str-interp/seqC/alt> ::=
| seqC(b1, b2) =>

interp(b1, nv, st)
interp(b2, nv, st)

Oh, but wait. The whole point was to evaluate the second term in the store returned
by the first one—otherwise there would have been no point to all these changes.
Therefore, instead we must evaluate the first term, capture the resulting store, and
use it to evaluate the second. (Evaluating the first term also yields its value, but
sequencing ignores this value and assumes the first term was run purely for its
potential mutations.) Thus:
<mut-str-interp/seqC> ::=

| seqC(b1, b2) =>
b1-value = interp(b1, nv, st)
interp(b2, nv, b1-value.st)

This says to interpret the first term: interp(b1, nv, st); name the resulting
value, which contains v and st fields, b1-value; and evaluate the second term
in the store from the first: interp(b2, nv, b1-value.st). The result will
be the value and store returned by the second term, which is what we expect. The
fact that the first term’s effect is only on the store can be read from the code because
we never use b1-value.v.

Do Now!

Spend a moment contemplating the code above. You’ll soon need to adjust
your eyes to read this pattern fluently.

Now let’s move on to the binary arithmetic primitives. These are similar to
sequencing in that they have two sub-terms, but in this case we really do care about
the value from each branch. As usual, we’ll look at only plusC since multC is
virtually identical.
<mut-str-interp/plusC> ::=
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| plusC(l, r) =>
lv = interp(l, nv, st)
rv = interp(r, nv, lv.st)
ret(plus-v(lv.v, rv.v), rv.st)

Observe that we’ve repeated the pattern because we have two sub-expressions to
evaluate whose values we want to use. Thus the first store (lv.st) is used to
interpret the second expression, and the overall result returns that of the second
(rv.st).

Here’s an important distinction. When we evaluate a term, we usually use the
same environment for all its sub-terms in accordance with the scoping rules of the
language. The environment thus flows in a recursive-descent pattern. In contrast,
the store is threaded: rather than using the same store in all branches, we take the
store from one branch and pass it on to the next, and take the result and send it back
out. This pattern is called store-passing style.

Now the penny drops. We see that store-passing style is our secret ingredient:
it enables the environment to preserve lexical scope while still giving a binding
structure that can reflect changes. Our intution told us that the environment had
to somehow participate in obtaining different results for the same syntactic ex-
pression, and we can now see how it does: not directly, by itself changing, but
indirectly, by referring to the store, which updates. Now we only need to see how
the store itself “changes”.

Let’s begin with boxing. To store a value in a box, we have to first allocate a
new place in the store where its value will reside. The value corresponding to a
box will then remember this location, for use in box mutation. To obtain a fresh
value each time, we will use the stateful counter example we have seen earlier
[section 21.5]:

new-loc = mk-counter()
Given this, we can now define the interpretation of box creation:
<mut-str-interp/boxC> ::=

| boxC(v) =>
val = interp(v, nv, st)
loc = new-loc()
ret(boxV(loc),

xtnd-sto(cell(loc, val.v), st))

Do Now!

Observe that we have relied above on new-loc, which is itself implemented
in terms of boxes! This is outright cheating. How would you modify the
interpreter so that we no longer need mutation for this little bit of state?



408 CHAPTER 31. MUTATION: STRUCTURES AND VARIABLES

To eliminate new-loc, the simplest option would be to add another parameter
to and return value from the interpreter, representing the largest address used so far.
Every operation that allocates in the store would return an incremented address,
while all others would return it unchanged. In other words, this is precisely another
application of the store-passing pattern. Writing the interpreter this way would
make it extremely unwieldy and might obscure the more important use of store-
passing for the store itself, which is why we have not done so. However, it is
important to make sure that we can: that’s what tells us that we are not reliant on
state to add state to the language.

Now that boxes are recording the location in memory, getting the value corre-
sponding to them is easy.
<mut-str-interp/unboxC> ::=

| unboxC(b) =>
val = interp(b, nv, st)
ret(fetch(val.v.l, val.st), val.st)

It’s the same pattern we saw before, where we have to use fetch to obtain the
actual value residing at that location. Note that we are relying on Racket to halt
with an error if the underlying value isn’t actually a boxV; otherwise it would be
dangerous to not check, since this would be tantamount to dereferencing arbitrary
memory [REF memory safety].

Let’s now see how to update the value held in a box. First we have to evaluate
the box expression to obtain a box, and the value expression to obtain the new value
to store in it. The box’s value is going to be a boxV holding a location.

In principle we want to “change”, or override, the value at that location in the
store. We can do this in two ways.

1. One is to traverse the store, find the old binding for that location, and replace
it with the new one, copying all the other store bindings unchanged.

2. The other, lazier, option is to simply extend the store with a new binding
for that location, which works provided we always obtain the most recent
binding for a location (which is how lookup works in the environment, so
fetch can do the same in the store).Observe that this latter option

forces us to commit to lists
rather than to sets. The code below is written to be independent of these options:

<mut-str-interp/setboxC> ::=
| setboxC(b, v) =>

b-val = interp(b, nv, st)
v-val = interp(v, nv, b-val.st)
ret(v-val.v,

xtnd-sto(cell(b-val.v.l, v-val.v), v-val.st))
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If we’ve implemented xtnd-sto as link above, we’ve actually taken the lazier
(and slightly riskier, because of its dependence on the implementation of fetch)
option.

Exercise

Implement the other version of store alteration, whereby we update an exist-
ing binding and thereby avoid multiple bindings for a location in the store.

Exercise

When we look for a location to override the value stored at it, can the location
fail to be present? If so, write a program that demonstrates this. If not, explain
what invariant of the interpreter prevents this from happening.

Alright, we’re now done with everything other than application! Most of ap-
plication should already be familiar: evaluate the function position, evaluate the
argument position, interpret the closure body in an extension of the closure’s envi-
ronment...but how do stores interact with this?
<mut-str-interp/appC> ::=

| appC(f, a) =>
clos = interp(f, nv, st)
clos-v :: Value = clos.v
clos-st :: Store = clos.st
arg-val = interp(a, nv, clos-st)
<mut-str-interp/appC/core>

Let’s start by thinking about extending the closure environment. The name we’re
extending it with is obviously the name of the function’s formal parameter. But
what location do we bind it to? To avoid any confusion with already-used locations
(a confusion we will explicitly introduce later!—section 31.4.3), let’s just allocate
a new location. This location is used in the environment, and the value of the
argument resides at this location in the store:
<mut-str-interp/appC/core> ::=

new-loc = new-loc()
interp(clos-v.f.body,
xtnd-env(bind(clos-v.f.arg, new-loc), clos-v.e),
xtnd-sto(cell(new-loc, arg-val.v), arg-val.st))

Because we have not said the function parameter is mutable, there is no real
need to have implemented procedure calls this way. We could instead have fol-
lowed the same strategy as before. Indeed, observe that the mutability of this
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location will never be used: only setboxC changes what’s in an existing store
location (the xtnd-sto above is technically a store initialization), and then only
when they are referred to by boxVs, but no box is being allocated above. However,You could call this the useless

app store. we have chosen to implement application this way for uniformity, and to reduce the
number of cases we’d have to handle.

Exercise

It’s a useful exercise to try to limit the use of store locations only to boxes.
How many changes would you need to make?

31.3.6 Implementing Mutation: Subtleties and Variations

Even though we’ve finished the implementation, there are still many subtleties and
insights to discuss.

1. Implicit in our implementation is a subtle and important decision: the order
of evaluation. For instance, why did we not implement addition thus?

<mut-str-interp/plusC/alt> ::=

| plusC(l, r) =>
rv = interp(r, nv, st)
lv = interp(l, nv, rv.st)
ret(plus-v(lv.v, rv.v), lv.st)

It would have been perfectly consistent to do so. Similarly, embodied in
the pattern of store-passing is the decision to evaluate the function position
before the argument. Observe that:

(a) Previously, we delegated such decisions to the underlying language im-
plementation. Now, store-passing has forced us to sequentialize the
computation, and hence make this decision ourselves (whether we re-
alized it or not).

(b) Even more importantly, this decision is now a semantic one. Before
there were mutations, one branch of an addition, for instance, could not
affect the value produced by the other branch. Because each branch canThe only effect they could have

was halting with an error or
failing to terminate—which, to
be sure, are certainly observable
effects, but at a much more
gross level. A program would
not terminate with two different
answers depending on the order
of evaluation.

have mutations that impact the value of the other, we must choose some
order so that programmers can predict what their program is going to
do! Being forced to write a store-passing interpreter has made this
clear.
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2. Observe that in the application rule, we are passing along the dynamic store,
i.e., the one resulting from evaluating both function and argument. This is
precisely the opposite of what we said to do with the environment. This
distinction is critical. The store is, in effect, “dynamically scoped”, in that
it reflects the history of the computation, not its lexical shape. Because we
are already using the term “scope” to refer to the bindings of identifiers,
however, it would be confusing to say “dynamically scoped” to refer to the
store. Instead, we simply say that it is persistent.

Languages sometimes dangerously conflate these two. In C, for instance,
values bound to local identifiers are allocated (by default) on the stack. How-
ever, the stack matches the environment, and hence disappears upon com-
pletion of the call. If the call, however, returned references to any of these
values, these references are now pointing to unused or even overridden mem-
ory: a genuine source of serious errors in C programs. The problem is that
programmers want the values themselves to persist; but the storage for those
values has been conflated with that for identifiers, who come and go with
lexical scope.

3. We have already discussed how there are two strategies for overriding the
store: to simply extend it (and rely on fetch to extract the newest one) or
to “search-and-replace”. The latter strategy has the virtue of not holding on
to useless store bindings that will can never be obtained again.

However, this does not cover all the wasted memory. Over time, we cease
to be able to access some boxes entirely: e.g., if they are bound to only
one identifier, and that identifier is no longer in scope. These locations are
called garbage. Thinking more conceptually, garbage locations are those
whose elimination does not have any impact on the value produced by a
program. There are many strategies for automatically identifying and re-
claiming garbage locations, usually called garbage collection [REF].

4. It’s very important to evaluate every expression position and thread the store
that results from it. Consider, for instance, this alternate implementation of
unboxC (compare with <mut-str-interp/unboxC>):

<mut-str-interp/unboxC/alt-1> ::=

| unboxC(b) =>
val = interp(b, nv, st)
ret(fetch(val.v.l, st), val.st)

Did you notice? We fetched the location from st, not val.st. But st
reflects mutations up to but before the evaluation of the unboxC expression,
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not any within it. Could there possibly be any? Mais oui!

(let ([b (box 0)])
(unbox (begin (set-box! b 1)

b)))
With the incorrect code above, this would evaluate to 0 rather than 1.

5. Here’s another, similar, error (again compare with<mut-str-interp/unboxC>):

<mut-str-interp/unboxC/alt-2> ::=

| unboxC(b) =>
val = interp(b, nv, st)
ret(fetch(val.v.l, val.st), st)

How do we break this? In the end we’re returning the old store, the one
before any mutations in the unboxC happened. Thus, we just need the
outside context to depend on one of them.

(let ([b (box 0)])
(+ (unbox (begin (set-box! b 1)

b))
(unbox b)))

This should evaluate to 2, but because the store being returned is one where
b’s location is bound to the representation of 0, the result is 1.

If we combined both bugs above—i.e., using st twice in the last line instead
of s-a twice—this expression would evaluate to 0 rather than 2.

Exercise

Go through the interpreter; replace every reference to an updated store
with a reference to one before update; make sure your test cases catch
all the introduced errors!

6. Observe that these uses of “old” stores enable us to perform a kind of time
travel: because mutation introduces a notion of time, these enable us to go
back in time to when the mutation had not yet occurred. This sounds both
interesting and perverse; does it have any use?

It does! Imagine that instead of directly mutating the store, we introduce
the idea of a journal of intended updates to the store. The journal flows in a
threaded manner just like the real store itself. Some instruction creates a new
journal; after that, all lookups first check the journal, and only if the journal
cannot find a binding for a location is it looked for in the actual store. There
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are two other new instructions: one to discard the journal (i.e., travel back
in time), and the other to commit it (i.e., all of its edits get applied to the real
store).

This is the essence of software transactional memory. Each thread maintains
its own journal. Thus, one thread does not see the edits made by the other
before committing (because each thread sees only its own journal and the
global store, but not the journals of other threads). At the same time, each
thread gets its own consistent view of the world (it sees edits it made, because
these are recorded in the journal). If the transaction ends successfully, all
threads atomically see the updated global store. If the transaction aborts, the
discarded journal takes with it all changes and the state of the thread reverts
(modulo global changes committed by other threads).

Software transactional memory offers one of the most sensible approaches
to tackling the difficulties of multi-threaded programming, if we insist on
programming with shared mutable state. Because most computers have only
one global store, however, maintaining the journals can be expensive, and
much effort goes into optimizing them. As an alternative, some hardware ar-
chitectures have begun to provide direct support for transactional memory by
making the creation, maintenance, and commitment of journals as efficient
as using the global store, removing one important barrier to the adoption of
this idea.

Exercise

Augment the language with the journal features of software transac-
tional memory.

Exercise

An alternate implementation strategy is to have the environment map names
to boxed Values. We don’t do it here because it: (a) would be cheating, (b)
wouldn’t tell us how to implement the same feature in a language without
boxes, (c) doesn’t necessarily carry over to other mutation operations, and
(d) most of all, doesn’t really give us insight into what is happening here.

It is nevertheless useful to understand, not least because you may find it a
useful strategy to adopt when implementing your own language. Therefore,
alter the implementation to obey this strategy. Do you still need store-passing
style? Why or why not?
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31.4 Variables

Now that we’ve got structure mutation worked out, let’s consider the other case:
variable mutation. We have already discussed [section 21.4] our choice of ter-
minology, and seen examplse of their use in Pyret. In particular, Whereas other
languages overload the mutation syntax, as we have seen [section 31.1], in Pyret
they are kept distinct: ! mutates fields of objects while := mutates variables. This
forces Pyret programmers to confront the distinction we introduced at the begin-
ning of section 31.1. We will, of course, sidestep these syntactic issues in our core
language by using different constructs for boxes and for variables.

31.4.1 The Syntax of Variable Assignment

The first thing to note about variable mutation is that, although it too has two sub-
terms like box mutation (setboxC), its syntax is fundamentally different. To
understand why, let’s return to our Java fragment:
x = 3;
In this setting, we cannot write an arbitrary expression in place of x: we must
literally write the name of the identifier itself. That is because, if it were an expres-
sion position, then we could evaluate it, yielding a value: for instance, if x were
previously bound to 1, this would be tantamout to writing the following statement:
1 = 3;
But this is, of course, nonsensical! We can’t assign a new value to 1, and indeed 1
is pretty much the definition of immutable. What we instead want is to find where
x is in the store, and change the value held over there.

Here’s another way to see this. Suppose, in Java, the local variable o is already
bound to some String object:
o = new String("an initial string");
Say the program now executes
o = new String("a new string");
Is it trying to change the content of the original string ("an initial string")?
Certainly not: the second assignment intends to leave that original string alone; it
only wants to change the value that o is referring to, so that subsequent references
evaluate to this new string ("a new string") object instead.

31.4.2 Interpreting Variables

We’ll start by reflecting this in our syntax:

data ExprC:
| numC(n :: Number)
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| plusC(l :: ExprC, r :: ExprC)
| multC(l :: ExprC, r :: ExprC)
| varC(s :: String)
| appC(f :: ExprC, a :: ExprC)
| fdC(arg :: String, body :: ExprC)
| setC(v :: String, b :: ExprC)
| seqC(b1 :: ExprC, b2 :: ExprC)

end

Observe that we’ve jettisoned the box operations, but kept sequencing because it’s
handy around mutation. Importantly, we’ve now added the setC case, and its
first sub-term is not an expression but the literal name of a variable. We’ve also
renamed idC to varC.

Because we’ve gotten rid of boxes, we can also get rid of the special box values.
When the only kind of mutation you have is variables, you don’t need new kinds
of values.

data Value:
| numV (n :: Number)
| closV (f :: ExprC, e :: List<Binding>)

end

As you might imagine, to support variables we need the same store-passing
style that we’ve seen before [section 31.3.5], and for the same reasons. What
differs is in precisely how we use it. Because sequencing is interpreted in just the
same way (observe that the verb for it does not depend on boxes versus variables),
that leaves us just the variable mutation case to handle.

First, we might as well evaluate the value expression and obtain the updated
store:
<mut-var-interp/setC> ::=

| setC(v, b) =>
new-val = interp(b, nv, st)
<mut-var-interp/setC/core>

What now? Remember we just said that we don’t want to fully evaluate the vari-
able, because that would just give the value it is bound to. Instead, we want to know
which memory location it corresponds to, and update what is stored at that memory
location; this latter part is just the same thing we did when mutating boxes:
<mut-var-interp/setC/core> ::=

var-loc = lookup(v, nv)
ret(new-val.v,
xtnd-sto(cell(var-loc, new-val.v), new-val.st))
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The very interesting new pattern we have here is this. When we added boxes, in the
idC case (<mut-str-interp/idC>), we looked up an identifier in the environment
(just as above), and then immediately fetched the value at that location from the
store; the composition yielded a value, just as it used to before we added stores.
Now, however, we have a new pattern: looking up an identifier in the environment
without subsequently fetching its value from the store, i.e., we have “half” of a
variable’s evaluation. The result of invoking just lookup is traditionally called
an l-value, for “left-hand-side (of an assignment) value”. This is a fancy way of
saying “memory address”, and stands in contast to the actual values that the store
yields: observe that it does not directly correspond to anything in the type Value.

And we’re done! We did all the hard work when we implemented store-passing
style (and also in that application allocated new locations for variables).

31.4.3 Reference Parameter Passing

Let’s return to the parenthetical statement above: that every application allocates a
fresh location in the store for the parameter.

Do Now!

Why does this matter? Consider the following Pyret program:

fun f(x):
x := 3

end

var y = 5
f(y)
After this runs, what do we expect to be the value of y?

In the example above, y evaluates to 5, not 3. That is because the value of the
formal parameter x is held at a different location than that of the actual parameter
y, so the mutation affects the location of x, leaving y unscathed.

Now suppose, instead, that application behaved as follows. When the actual
parameter is a variable, and hence has a location in memory, instead of allocating a
new location for the value, it simply passes along the existing one for the variable.
Now the formal parameter is referring to the same store location as the actual: i.e.,
they are variable aliases. Thus any mutation on the formal will leak back out into
the calling context; the above program would evaluate to 3 rather than 5. These is
called a call-by-reference parameter-passing strategy.Instead, our interpreter

implements call-by-value, and
this is the same strategy
followed by languages like
Java. This causes confusion
because when the value is itself
mutable, changes made to the
value in the callee are observed
by the caller. However, that is
simply an artifact of mutable
values, not of the calling
strategy. Please avoid this
confusion!

For some years, this power was considered a good idea. It was useful because
programmers could write abstractions such as swap, which swaps the value of two
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variables in the caller. However, the disadvantages greatly outweigh the advan-
tages:

• A careless programmer can alias a variable in the caller and modify it without
realizing they have done so, and the caller may not even realize this has
happened until some obscure condition triggers it.

• Some people thought this was necessary for efficiency: they assumed the
alternative was to copy large data structures. However, call-by-value is com-
patible with passing just the address of the data structure. You only need
make a copy if (a) the data structure is mutable, (b) you do not want the
caller to be able to mutate it, and (c) the language does not itself provide
immutability annotations or other mechanisms.

• It can force non-local and hence non-modular reasoning. For instance, sup-
pose we have the procedure:

fun f(g):
var x = 10
g(x)
...

end

If the language were to permit by-reference parameter passing, then the pro-
grammer cannot locally—i.e., just from the above code—determine what the
value of x will be in the ellipses, because it depends on precisely who the
callee (which is being passed in as a parameter) will be, and what it might
do, which in turn may depend on dynamic conditions (including the phase
of the moon).

At the very least, then, if the language is going to permit by-reference param-
eters, it should let the caller determine whether to pass the reference—i.e., let the
callee share the memory address of the caller’s variable—or not. However, even
this option is not quite as attractive as it may sound, because now the callee faces
a symmetric problem, not knowing whether its parameters are aliased or not. In
traditional, sequential programs this is less of a concern, but if the procedure is
reentrant, the callee faces precisely the same predicaments.

At some point, therefore, we should consider whether any of this fuss is worth-
while. Instead, callers who want the callee to perform a mutation could simply
send a boxed value to the callee. The box signals that the caller accepts—indeed,
invites—the callee to perform a mutation, and the caller can extract the value when



418 CHAPTER 31. MUTATION: STRUCTURES AND VARIABLES

it’s done. This does obviate the ability to write a simple swapper, but that’s a small
price to pay for genuine software engineering concerns.

31.5 The Design of Stateful Language Operations

Though most programming languages include one or both kinds of state we have
studied, their admission should not be regarded as a trivial or foregone matter. On
the one hand, state brings some vital benefits:

• State provides a form of modularity. As our very interpreter demonstrates,
without explicit stateful operations, to achieve the same effect:

– We would need to add explicit parameters and return values that pass
the equivalent of the store around.

– These changes would have to be made to all procedures that may be
involved in a communication path between producers and consumers
of state.

Thus, a different way to think of state in a programming language is that it
is an implicit parameter already passed to and returned from all procedures,
without imposing that burden on the programmer. This enables procedures
to communicate “at a distance” without all the intermediaries having to be
aware of the communication.

• State makes it possible to construct dynamic, cyclic data structures, or at
least to do so in a relatively straightforward manner [chapter 20].

• State gives procedures memory, such as new-loc above. If a procedure
could not remember things for itself, the callers would need to perform the
remembering on its behalf, employing the moral equivalent of (at least lo-
cal) store-passing. This is not only unwieldy, it creates the potential for a
caller to interfere with the memory for its own nefarious purposes (e.g., a
caller might purposely send back an old store, thereby obtaining a reference
already granted to some other party, through which it might launch a correct-
ness or security attack).

On the other hand, state imposes real costs on programmers as well as on pro-
grams that process programs (such as compilers). One is “aliasing”, which we dis-
cuss later [REF]. Another is “referential transparency”, which too we hope to return
to [REF]. Finally, we have described above how state provides a form of modular-
ity. However, this same description could be viewed as that of a back-channel of
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communication that the intermediaries did not know and could not monitor. In
some (especially security and distributed system) settings, such back-channels can
lead to collusion, and can hence be extremely dangerous and undesirable.

Because there is no optimal answer, it is probably wise to include mutation
operators but to carefully delinate them. In Standard ML, for instance, there is
no variable mutation, because it is considered unnecessary. Instead, the language
has the equivalent of boxes (called refs). One can easily simulate variables using
boxes, so no expressive power is lost, though it does create more potential for
aliasing than variables alone would have ([REF aliasing]) if the boxes are not used
carefully.

In return, however, developers obtain expressive types: every data structure is
considered immutable unless it contains a ref, and the presence of a ref is a
warning to both developers and programs (such as compilers) that the underlying
value may keep changing. Thus, for instance, suppose b is a box and v is bound This same argument applies to

Pyret, where the absence of a
ref declaration means that a
field is immutable, and the
absence of a var declaration
means an identifier is
immutable, i.e., not a variable.

to the unboxing of b. A developer should be aware that replacing all instances of
the unboxing b with references to v is not safe, because the former always fetches
the current value in the box while the latter holds the value only at the instant
when v was computed, and may now be inconsistent. The declaration that a field
is mutable provides this information to both the developer and to programming
tools (such as compilers); in particular, the absence of such a declaration permits
caching of values, thereby trading computation time for space.

31.6 Typing State

Adding stateful operations to a type-checker is easy: the only safe thing to do is
make sure the type of the new value is exactly the same as that of the old one. If
that is true, the behavior of the program will be indistinguishable to the type system
before and after the mutation. That is, it is safest to follow invariance [section 27.2].

31.6.1 Mutation and Polymorphism

Later, once we encounter subtyping [section 32.6.1], we will find it is no longer
trivial to type mutation. Already, however, mutation is complex in the presence of
polymorphism. Let us first give polymorphic types to boxes, where Box is a type
constructor for boxes:

box<T> :: T -> Box(T)
unbox<T> :: Box(T) -> T
set-box<T> :: Box(T), T -> Box(T)
(assuming that the mutation operation, set-box, returns the box as its result).
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Exercise

Implement the above three functions.

Now let us consider a simple example that uses these:

let f = box(lam(x): x end):
set-box(f, lam(x): x + 5 end)
unbox(f)(true)

end

Initially, the type of f is Box((A -> A)) where (A -> A) represents the type
of the polymorphic identity function. When performing inference, a copy of this
type certainly unifies with Number -> Number, the type of lam(x): x + 5 end.
Another copy is used at the application site; the argument type unifies with that of
true, giving the whole expression the type Boolean. However, when the actual
function is applied, it attempts to add true to 5, resulting in a run-time error.
If the compiler had assumed the type-system was sound and had not compiled in
checks, this program could even result in a segmentation fault.

There are many ways to try to understand this problem, which is beyond the
scope of this study. The simplest way is that polymorphism and mutation do not
work together well. The essence of polymorphism is to imagine a quantified type
is instantiated at each use; however, the essence of mutation is to silently transmit
values from one part of the program to the other. Thus, the values being unified
at two different sites are only guaranteed to be compatible with the let-bound
identifier—not with each other. This is normally not a problem because the two do
not communicate directly, except where mutation is involved. Therefore, a simple
solution in this case is to prevent polymorphic generalization for mutable let-
bound identifiers.

31.6.2 Typing the Initial Value

There is one last issue we should address where mutation is concerned: the typing
of cycle creation, and in particular dealing with the problem of section 21.3.3. We
have discussed several approaches to handling the initial value; each of these has
consequences for typing:

1. Using a fixed initial value of a standard type means the value subsequently
mutated into place may not be type-compatible, thereby failing invariance.

2. Using a different initial value of the type that will eventually be put into the
mutable has the problem that prematurely observing it is even more deadly,
because it may not be distinguishable from the eventual value.
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3. Using a new value just for this case works provided there is one of each type.
Otherwise, again, we violate invariance. But having one of each type is a
problem in itself, because now the run-time system has to check for all of
them.

4. Syntactically restricting recursion to functions is the safest, because the ini-
tial value is never seen. As a result, there is no need to provide any mean-
ingful type for it.

In short, this is a place where we have to confront unsurmountable trade-offs. The
first option sacrifices typability; the second option sacrifices program reliability
(because the dummy values are of the right type, and may hence be inadvertently
used without noticing they are wrong); the third sacrifices run-time simplicity; and
the fourth sacrifices programmer flexibility.
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Chapter 32

Objects: Interpretation and
Types

When a language admits functions as values, it provides developers the most nat-
ural way to represent a unit of computation. Suppose a developer wants to pa-
rameterize some function f. Any language lets f be parameterized by passive
data, such as numbers and strings. But it is often attractive to parameterize it over
active data: a datum that can compute an answer, perhaps in response to some in-
formation. Furthermore, the function passed to f can—assuming lexically-scoped
functions—refer to data from the caller without those data having to be revealed
to f, thus providing a foundation for security and privacy. Thus, lexically-scoped
functions are central to the design of many secure programming techniques.

While a function is a splendid thing, it suffers from excessive terseness. Some-
times we might want multiple functions to all close over to the same shared data;
the sharing especially matters if some of the functions mutate it and expect the
others to see the result of those mutations. In such cases, it becomes unwieldly to
send just a single function as a parameter; it is more useful to send a group of func-
tions. The recipient then needs a way to choose between the different functions
in the group. This grouping of functions, and the means to select one from the
group, is the essence of an object. We are therefore perfectly placed to study ob-
jects having covered functions [section 26.3], mutation [chapter 31], and recursion
[section 21.3]. We cannot hope to do justice to

the enormous space of object
systems. Please read
Object-Oriented Programming
Languages: Application and
Interpretation by Éric Tanter,
which goes into more detail and
covers topics ignored here.

Let’s add this notion of objects to our language. Then we’ll flesh it out and
grow it, and explore the many dimensions in the design space of objects. We’ll
first show how to add objects to the core language, but because we’ll want to pro-
totype many different ideas quickly, we’ll soon shift to a desugaring-based strategy.
Which one you use depends on whether you think understanding them is critical
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to understanding the essence of your language. One way to measure this is how
complex your desugaring strategy becomes, and whether by adding some key core
language enhancements, you can greatly reduce the complexity of desugaring.

32.1 Interpreting Objects

The simplest notion of an object—pretty much the only thing everyone who talks
about objects agrees about—is that an object is

• a value, that

• maps names to

• stuff: either other values or “methods”.

From a minimalist perspective, methods seem to be just functions, and since we
already have those in the language, we can put aside this distinction.We’re about to find out that

“methods” are awfully close to
functions but differ in important
ways in how they’re called
and/or what’s bound in them.

Starting from the language with variables, let’s define this very simple notion
of objects by adding it to the core language. We clearly have to extend our notion
of values:

data Value:
| numV(n :: Number)
| closV(f :: ExprC, e :: List<Binding>)
| objV(ns :: List<String>, vs :: List<Value>)

end
We’ll extend the expression grammar to support literal object construction expres-
sions:Observe that this is already a

design decision. In some
languages, like JavaScript, a
developer can write literal
objects: a notion so popular that
a subset of the syntax for it in
JavaScript has become a Web
standard, JSON. In other
languages, like older versions
of Java, objects can only be
created by invoking a
constructor on a class. We can
simulate both by assuming that
to model the latter kind of
language, we must write object
literals only in special positions
following a stylized convention,
as we do when desugaring
below.

| objC(ns :: List<String>, vs :: List<ExprC>)
Evaluating such an object expression is easy: we just evaluate each of its expression
positions. In the presence of state, however, we have to be careful to thread the
store:

| objC(ns, vs) =>
obj-vs = eval-obj-vs(vs, nv, st)
ret(objV(ns, obj-vs.exprs), obj-vs.final-store)

Exercise

Write eval-obj-vs, which evaluates each expression in vs while thread-
ing the store. Assume it returns an object with two fields: exprs is the list of
evaluated expressions, while final-store is the final store ensuing from
these evaluations.
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Unfortunately, we can’t actually use an object, because we have no way of ob-
taining its content. For that reason, we should add an operation to extract members:
<msgC-def> ::=

| msgC(o :: ExprC, n :: String)
whose behavior is intuitive:

| msgC(o, n) =>
o-val = interp(o, nv, st)
msg = lookup-msg(n, o-val.v)
ret(msg, o-val.st)

Exercise

Implement lookup-msg.

In principle, msgC can be used to obtain any kind of member but for simplicity,
we need only assume that we have functions. To use them, we must apply them to
values. This is cumbersome to write directly, so let’s assume desugaring has taken
care of it for us: that is, the user can write (msg o m v)—where o evaluates
to an object, m names a method, and v evaluates to an argument value—and this
desugars into using msgC to obtain the method and regular application to apply it. For illustration, we’ll assume

methods take only one
argument. This is easy to relax.
Note that in a Lispy language
we could have instead written
(define (msg o m . a) (apply (o m) a)),
which would have let msg take
any number of arguments.

With this we have a full first language with objects. For instance, here is an
object definition and invocation:
(let o (obj (add1 (lambda x (+ x 1)))

(sub1 (lambda x (+ x -1))))
(msg o sub1 2))

and this evaluates to (numV 1).

32.2 Objects by Desugaring

While defining objects in the core language is good to really understand their
essence, it’s an unwieldy way to go about studying them. Instead, we’ll use Pyret
to represent objects, sticking to the parts of the language we already know how
to implement in our interpreter. That is, we’ll assume that we are looking at the
output of desugaring. (For this reason, we’ll also stick to stylized code, potentially
writing unnecessary expressions on the grounds that this is what a simple program
generator would produce.)
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Exercise

The code that follows largely drops type annotations. Go back in and add
these annotations wherever possible; where you can’t, explain what problems
you encounter. See section 32.6.

32.2.1 Objects as Named Collections

Let’s begin by reproducing the object language we had above. An object is just
a value that dispatches on a given name. For simplicity, we’ll use anonymous
functions to represent the object and conditionals to implement the dispatching.Observe that basic objects are a

generalization of anonymous
functions to have multiple
“entry-points”. Conversely, an
anonymous functions is an
object with just one entry-point,
so it doesn’t need a “method
name” to disambiguate.

<obj-o-1> ::=
o-1 =

lam(m):
if m == "add1":

lam(x): x + 1 end
else if m == "sub1":

lam(x): x - 1 end
else:

raise("message not found: " + m)
end

end
This is the same object we defined earlier, and we use its method in the same way:

check: o-1("add1")(5) is 6 end

Of course, writing method invocations with these nested function calls is un-
wieldy (and is about to become even more so), so we’d be best off equipping our-
selves with a convenient syntax for invoking methods, which we can define here as
a function:

fun msg(o, m, a): o(m)(a) end

This enables us to rewrite our test:

check: msg(o-1, "add1", 5) is 6 end

Do Now!

Something very important changed when we switched to the desugaring strat-
egy. Do you see what it is?

Recall the syntax definition we had earlier: <msgC-def>. The “name” posi-
tion of a message was very explicitly a syntactic string. That is, the user had to
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write the literal name of the method there. In our desugared version, the name
position is just an expression that must evaluate to a string; this permits the user to
write the following:

check: msg(o-1, "add" + "1", 5) is 6 end

which may very much not be intended [section 32.3].
This is a general problem with desugaring: the target language may allow com-

putations that have no counterpart in the source, and hence cannot be mapped back
to it. Fortunately we don’t often need to perform this inverse mapping, though
it does arise in some debugging and program comprehension tools. More subtly,
however, we must ensure that the target language does not produce values that have
no corresponding equivalent in the source.

Now that we have basic objects, let’s start adding the kinds of features we’ve
come to expect from most object systems. But before we proceed, it’s unwieldy to
define an object as an explicit conditional; we would rather write a more declarative
mapping from names to methods, and leave the implementation of the lookup to the
language. This, after all, is one of the key primitives provided by every definition
of object-orientation. That is, we wish to write the previous object (<obj-o-1>) as

o-1-1 = mk-object(
[list:

mtd("add1", lam(x): x + 1 end),
mtd("sub1", lam(x): x - 1 end) ] )

and to support this, we define the datatype

data Mtd:
| mtd(name :: String, value)

end

and the corresponding function

fun mk-object(n-vs):
lam(m):

fun lookup(locals):
cases (List) locals:

| empty => raise("message not found: " + m)
| link(f, r) =>

if f.name == m: f.value else: lookup(r) end
end

end
lookup(n-vs)

end
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end

With this much simpler notation—which does not even require desugaring to
implement—we are now better equipped to handle the study of object system fea-
tures.

32.2.2 Constructors

A constructor is simply a function that is invoked at object construction time. We
currently lack such a function. By turning an object from a literal into a function
that takes constructor parameters, we achieve this effect:

o-constr-1 =
lam(x):
mk-object( [list: mtd("addX", lam(y): x + y end) ])

end

check:
msg(o-constr-1(5), "addX", 3) is 8
msg(o-constr-1(2), "addX", 3) is 5

end

In the first example, we pass 5 as the constructor’s argument, so adding 3 yields 8.
The second is similar, and shows that the two invocations of the constructors don’t
interfere with one another.

32.2.3 State

Many people believe that objects primarily exist to encapsulate state. We certainlyAlan Kay, who won a Turing
Award for inventing Smalltalk
and modern object technology,
disagrees. In The Early History
of Smalltalk, he says, “[t]he
small scale [motivation for
OOP] was to find a more
flexible version of assignment,
and then to try to eliminate it
altogether”. He adds, “It is
unfortunate that much of what
is called ‘object-oriented
programming’ today is simply
old style programming with
fancier constructs. Many
programs are loaded with
‘assignment-style’ operations
now done by more expensive
attached procedures.”

haven’t lost that ability. If we desugar to a language with variables (we could
equivalently use boxes, in return for a slight desugaring overhead), we can easily
have multiple methods mutate common state, such as a constructor argument:

o-state-1 =
lam(count):
var mut-count = count
mk-object(

[list:
mtd("inc", lam(n): mut-count := mut-count + n end),
mtd("dec", lam(n): mut-count := mut-count - n end),
mtd("get", lam(_): mut-count end) ] )

end

http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_Abstract.html
http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_Abstract.html
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For instance, we can test a sequence of operations:

check:
o = o-state-1(5)
msg(o, "inc", 1)
msg(o, "dec", 1)
msg(o, "get", "dummy") is 5

end

and also notice that mutating one object doesn’t affect another:

check:
o1 = o-state-1(5)
o2 = o-state-1(5)
msg(o1, "inc", 1)
msg(o1, "inc", 1)
msg(o1, "get", "dummy") is 7
msg(o2, "get", "dummy") is 5

end

32.2.4 Private Members

Another common object language feature is private members: ones that are visible
only inside the object, not outside it. These may seem like an additional feature we Except that, in Java, instances

of other classes of the same
type are privy to “private”
members. Otherwise, you
would simply never be able to
implement an approximation to
an Abstract Data Type.

need to implement, but we already have the necessary mechanism in the form of
locally-scoped, lexically-bound variables, such as mut-count above: there is no
way for surrounding code to access mut-count directly, because lexical scoping
ensures that it remains hidden to the world.

32.2.5 Static Members

Another feature often valuable to users of objects is static members: those that are
common to all instances of the “same” type of object. This, however, is merely We use quotes because there are

many notions of sameness for
objects. And then some.

a lexically-scoped identifier (making it private) that lives outside the constructor
(making it common to all uses of the constructor), such as counter below:

mk-bank-account =
block:

var counter = 0
lam(amount):
var balance = amount
counter := counter + 1
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mk-object(
[list:

mtd("deposit", lam(m): balance := balance + m end),
mtd("withdraw", lam(m): balance := balance - m end),
mtd("balance", lam(_): balance end),
mtd("how-many-accounts", lam(_): counter end) ])

end
end

We’ve written the counter increment where the “constructor” for this object would
go, though it could just as well be manipulated inside the methods. This obeys the
following tests:

check:
acc-1 = mk-bank-account(0)
msg(acc-1, "how-many-accounts", "dummy") is 1
acc-2 = mk-bank-account(100)
msg(acc-1, "how-many-accounts", "dummy") is 2
msg(acc-2, "how-many-accounts", "dummy") is 2
msg(acc-1, "deposit", 100)
msg(acc-1, "withdraw", 50)
msg(acc-2, "deposit", 10)
msg(acc-1, "balance", "dummy") is 50
msg(acc-2, "balance", "dummy") is 110
msg(acc-1, "how-many-accounts", "dummy") is 2
msg(acc-2, "how-many-accounts", "dummy") is 2

end

Note that the different objects each affect the result seen by the other.

32.2.6 Objects with Self-Reference

Until now, our objects have simply been packages of named functions grouped
together and hence given different, named entry-points. We’ve seen that many of
the features considered important in object systems are actually simple patterns
over functions and scope, and have indeed been used—without names assigned to
them—for decades by programmers armed with anonymous functions (with lexical
scope).

One characteristic that actually distinguishes object systems is that each object
is automatically equipped with a reference to the same object, often called self
or this. Can we implement this easily?We prefer this slightly dry way

of putting it to the
anthropomorphic “knows about
itself” terminology often
adopted by object advocates.
Indeed, note that we have gotten
this far into object system
properties without ever needing
to resort to anthropomorphism.
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Self-Reference Using Mutation

Yes, we can, because we have seen just this very pattern when we implemented
recursion; we’ll just adapt it to refer not to the same box or function but to the
same object.

o-self =
block:

var self = "dummy"
self :=
mk-object(

[list:
mtd("first",

lam(v): msg(self, "second", v + 1) end),
mtd("second",

lam(v): v + 1 end )])
self

end

Observe that this is precisely the recursion pattern [section 21.3], adapted slightly.
We’ve tested it having "first" invoke its own "second"method. Sure enough,
this produces the expected answer:

check: msg(o-self, "first", 5) is 7 end

Self-Reference Without Mutation

If you know how to implement recursion without mutation [REF Y/omega], you’ll
notice that the same solution applies here, too. Observe:

o-self-no-state =
mk-object(

[list:
mtd("first",

lam(self, v): smsg(self, "second", v + 1) end),
mtd("second",

lam(self, v): v + 1 end )])

Each method now takes self as an argument. That means method invocation
must be modified to pass along the object as part of the invocation:

fun smsg(o, m, a): o(m)(o, a) end
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That is, when invoking a method on o, we must pass o as a parameter to the
method. Obviously, this approach is dangerous because we can potentially pass a
different object as the “self”. Exposing this to the developer is therefore probably
a bad idea; if this implementation technique is used, it should only be done in
desugaring.Nevertheless, Python exposes

just this in its surface syntax. Just to be sure, we can check this using essentially the same code as before:

check: smsg(o-self, "first", 5) is 7 end

32.2.7 Dynamic Dispatch

Finally, we should make sure our objects can handle a characteristic attribute of
object systems, which is the ability to invoke a method without the caller having to
know or decide which object will handle the invocation. Suppose we have a binary
tree data structure, where a tree consists of either empty nodes or leaves that hold
a value. In traditional functions, we are forced to implement the equivalent some
form of conditional that exhaustively lists and selects between the different kinds
of trees. If the definition of a tree grows to include new kinds of trees, each of
these code fragments must be modified. Dynamic dispatch solves this problem by
eliminating this conditional branch from the user’s program and instead handling
it by the method selection code built into the language. The key feature that this
provides is an extensible conditional. This is one dimension of the extensibility
that objects provide.This property—which appears

to make systems more
black-box extensible because
one part of the system can grow
without the other part needing
to be modified to accommodate
those changes—is often hailed
as a key benefit of
object-orientation. While this is
indeed an advantage objects
have over functions, there is a
dual advantage that functions
have over objects, and indeed
many object programmers end
up contorting their code—using
the Visitor pattern—to make it
look more like a function-based
organization. Read Synthesizing
Object-Oriented and
Functional Design to Promote
Re-Use for a running example
that will lay out the problem in
its full glory. Try to solve it in
your favorite language, and see
the Racket solution.

Let’s now defined our two kinds of tree objects:

mt =
lam():
mk-object(

[list:
mtd("add",

lam(self, _): 0 end) ])
end

node =
lam(v, l, r):
mk-object(

[list:
mtd("add",

lam(self, _):
v

+ smsg(l, "add", "dummy")

http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
http://www.cs.utah.edu/plt/publications/icfp98-ff/paper.shtml
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+ smsg(r, "add", "dummy") end) ] )
end

With these, we can make a concrete tree:

a-tree =
node(10,

node(5, mt(), mt()),
node(15, node(6, mt(), mt()), mt()))

And finally, test it:

check: smsg(a-tree, "add", "dummy") is (10 + 5 + 15 + 6) end

Observe that both in the test and in the "add"method of node, there is a reference
to "add" without checking whether the recipient is a mt or a node. Instead,
the run-time system extracts the recipient’s "add" method and invokes it. This
missing conditional in the user’s source program provided automatically by the
system is the essence of dynamic dispatch.

32.3 Member Access Design Space

We already have two orthogonal dimensions when it comes to the treatment of
member names. One dimension is whether the name is provided statically or com-
puted, and the other is whether the set of names is fixed or variable:

Name is Static Name is Computed
Fixed Set of Members As in base Java. As in Java with reflection to compute the name.
Variable Set of MembersDifficult to envision (what use would it be?).Most scripting languages.
Only one case does not quite make sense: if we force the developer to specify the
member name in the source file explicitly, then no new members would be acces-
sible (and some accesses to previously-existing, but deleted, members would fail).
All other points in this design space have, however, been explored by languages.

The lower-right quadrant corresponds closely with languages that use hash-
tables to represent objects. Then the name is simply the index into the hash-table.
Some languages carry this to an extreme and use the same representation even
for numeric indices, thereby (for instance) conflating objects with dictionaries and
even arrays. Even when the object only handles “member names”, this style of
object creates significant difficulty for type-checking [chapter 27] and is hence not
automatically desirable.

Therefore, in the rest of this section, we will stick with “traditional” objects
that have a fixed set of names and even static member name references (the top-left
quadrant). Even then, we will find there is much, much more to study.
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32.4 What (Goes In) Else?

So far, the “else clause” of method lookup (which is currently implemented by
mk-object)—namely, what to do when the list of methods is empty—has sig-
naled a “method not found” error. What else might happen instead? One possibil-
ity, adopted by many programming languages, is to “chain” control to one or more
parent object(s). This is called inheritance.

Let’s return to our model of desugared objects above. To implement inheri-
tance, the object must be given “something” to which it can delegate method invo-
cations that it does not recognize. A great deal will depend on what that “some-
thing” is.

One answer could be that it is simply another object: where currently we have

| empty => raise("message not found: " + m)
we could instead have

| empty => parent-object(m)
Due to our representation of objects, this application effectively searches for the
method in the parent object (and, presumably, recursively in its parents). If a
method matching the name is found, it returns through this chain to the original
call that sought the method. If none is found, the final parent object presumably
signals the same “message not found” error.

Exercise

Observe that the application parent-object(m) is like “half a msg”, just
like an l-value was “half” a variable’s evaluation [section 31.4.2]. Is there any
connection?

Let’s try this by extending our trees to implement another method, "size".
We’ll write an “extension” (you may be tempted to say “sub-class”, but hold off for
now!) for each node and mt to implement the size method. We intend these to
extend the existing definitions of node and mt, so we’ll use the extension pattern
described above.We’re not editing the existing

definitions because that is
supposed to be the whole point
of object inheritance: to reuse
code in a black-box fashion.
This also means different
parties, who do not know one
another, can each extend the
same base code. If they had to
edit the base, first they have to
find out about each other, and in
addition, one might dislike the
edits of the other. Inheritance is
meant to sidestep these issues
entirely.

32.4.1 Classes

Immediately we see a design choice. Is this the constructor pattern?

node-size-ext =
fun(parent-object, v, l, r):
...
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That is, we pass the parent object to node-size-ext along with the construc-
tor parameters. Since the parent object will be an instance of node, and the two
objects should presumably have the same values for the parameters, this means
we would have had to specify those values twice (which violates the DRY prin-
ciple). As an alternative, we can simply pass the constructor of the parent to
node-size-ext and let it construct the parent object:

node-size-ext =
lam(parent-maker, v, l, r):

parent-object = parent-maker(v, l, r)
mk-ext-object(parent-object,

[list:
mtd("size",

lam(self, _):
1

+ smsg(l, "size", "dummy")
+ smsg(r, "size", "dummy") end) ] )

end

Using this, we can make a more user-friendly interface to nodes with the size
method:

fun node-size(v, l, r): node-size-ext(node, v, l, r) end

Do Now!

Did you notice that instead of mk-object we’ve used mk-ext-object
above? Do you see that it takes one extra parameter? Try to define it for
yourself.

The entire difference in mk-ext-object is that, if it cannot find a method
in the current object, it chains to the parent:

fun mk-ext-object(parent, n-vs):
lam(m):

fun lookup(locals):
cases (List) locals:

| empty => parent(m)
| link(f, r) =>

if f.name == m: f.value else: lookup(r) end
end

end
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lookup(n-vs)
end

end
With this, we can similarly create an extension of empty tree nodes:

mt-size-ext =
lam(parent-maker):
parent-object = parent-maker()
mk-ext-object(parent-object,

[list:
mtd("size",

lam(self, _): 0 end) ])
end

fun mt-size(): mt-size-ext(mt) end
Finally, we can use these objects to construct a tree:

a-tree-size =
node-size(10,

node-size(5, mt-size(), mt-size()),
node-size(15, node-size(6, mt-size(), mt-size()), mt-size()))

When testing, we should make sure both old and new behavior work:

check:
smsg(a-tree-size, "add", "dummy") is (10 + 5 + 15 + 6)
smsg(a-tree-size, "size", "dummy") is 4

end

Exercise

Earlier, we commented that chaining method-lookup to parents presumably
bottoms out at some sort of “empty object”, which might look like this:

fun empty-object(m):
raise("message not found: " + m)

end

However, we haven’t needed to define or use this despite the use of mk-ext-object.
Why is that, and how would you fix that?

What we have done is capture the essence of a class. Each function parameter-
ized over a parent is...well, it’s a bit tricky, really. Let’s call it a blob for now. A
blob corresponds to what a Java programmer defines when they write a class:
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class NodeSize extends Node { ... }

Do Now!

So why are we going out of the way to not call it a “class”?

When a developer invokes a Java class’s constructor, it in effect constructs
objects all the way up the inheritance chain (in practice, a compiler might optimize
this to require only one constructor invocation and one object allocation). These
are private copies of the objects corresponding to the parent classes (private, that
is, up to the presence of static members). There is, however, a question of how
much of these objects is visible. Java chooses that—unlike in our implementation
above—only one method of a given name (and signature) remains, no matter how
many there might have been on the inheritance chain, whereas every field remains
in the result, and can be accessed by casting. The latter makes some sense because
each field presumably has invariants governing it, so keeping them separate (and
hence all present) is wise. In contrast, it is easy to imagine an implementation that
also makes all the methods available, not only the ones lowest (i.e., most refined)
in the inheritance hierarchy. Many scripting languages take the latter approach.

Exercise

In the implementation above, we have relied on the self-application seman-
tics for recursive access to an object, rather than using state. The reason is
because the behavior of inheritance would be subtly wrong if we used state
naively, as we have shown above. Can you construct an example that illus-
trates this?

By examining values carefully, you will notice that the self reference is to the
most refined object at all times. This demonstrates the other form of extensibility
we get from traditional objects: extensible recursion. The extensible conditional
can be viewed as free extension across “space”, namely, the different variants of
data, whereas extensible recursion can be viewed as free extension across “time”,
namely, the different extensions to the code. Nevertheless, as this paper points out,
there’s no free lunch.

32.4.2 Prototypes

In our description above, we’ve supplied each class with a description of its parent
class. Object construction then makes instances of each as it goes up the inher-
itance chain. There is another way to think of the parent: not as a class to be

http://www.cs.brown.edu/~sk/Publications/Papers/Published/kff-synth-fp-oo/
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instantiated but, instead, directly as an object itself. Then all children with the
same parent would observe the very same object, which means changes to it from
one child object would be visible to another child. The shared parent object is
known as a prototype.The archetypal prototype-based

language is Self. Though you
may have read that languages
like JavaScript are “based on”
Self, there is value to studying
the idea from its source,
especially because Self presents
these ideas in their purest form.

Some language designers have argued that prototypes are more primitive than
classes in that, with other basic mechanisms such as functions, one can recover
classes from prototypes—but not the other way around. That is essentially what
we have done above: each “class” function contains inside it an object description,
so a class is an object-returning-function. Had we exposed these are two different
operations and chosen to inherit directly from an object, we would have something
akin to prototypes.

Exercise

Modify the inheritance pattern above to implement a Self-like, prototype-
based language, instead of a class-based language. Because classes provide
each object with distinct copies of their parent objects, a prototype-language
might provide a clone operation to simplify creation of the operation that
simulates classes atop prototypes.

32.4.3 Multiple Inheritance

Now you might ask, why is there only one fall-through option? It’s easy to gen-
eralize this to there being many, which leads naturally to multiple inheritance. In
effect, we have multiple objects to which we can chain the lookup, which of course
raises the question of what order in which we should do so. It would be bad enough
if the ascendants were arranged in a tree, because even a tree does not have a canon-
ical order of traversal: take just breadth-first and depth-first traversal, for instance
(each of which has compelling uses). Worse, suppose a blob A extends B and C; but
now suppose B and C each extend D. Now we have to confront this question: willThis infamous situation is

called diamond inheritance. If
you choose to include multiple
inheritance in your language
you can lose yourself for days
in design decisions on this.
Because it is highly unlikely
you will find a canonical
answer, your pain will have
only begun.

there be one or two D objects in the instance of A? Having only one saves space
and might interact better with our expectations, but then, will we visit this object
once or twice? Visiting it twice should not make any difference, so it seems un-
necessary. But visiting it once means the behavior of one of B or C might change.
And so on. As a result, virtually every multiple-inheritance language is accompa-
nied by a subtle algorithm merely to define the lookup order—and each language’s
designer argues why their algorithm is more intuitive.

Multiple inheritance is only attractive until you’ve thought it through.

http://selflanguage.org/
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32.4.4 Super-Duper!

Many languages have a notion of super-invocations, i.e., the ability to invoke a
method or access a field higher up in the inheritance chain. This includes doing Note that we say “the” and

“chain”. When we switch to
multiple inheritance, these
concepts are replaced with
something much more complex.

so at the point of object construction, where there is often a requirement that all
constructors be invoked, to make sure the object is properly defined.

We have become so accustomed to thinking of these calls as going “up” the
chain that we may have forgotten to ask whether this is the most natural direction.
Keep in mind that constructors and methods are expected to enforce invariants.
Whom should we trust more: the super-class or the sub-class? One argument
would say that the sub-class is most refined, so it has the most global view of the
object. Conversely, each super-class has a vested interest in protecting its invariants
against violation by ignorant sub-classes.

These are two fundamentally opposed views of what inheritance means. Going
up the chain means we view the extension as replacing the parent. Going down
the chain means we view the extension as refining the parent. Because we nor-
mally associate sub-classing with refinement, why do our languages choose the
“wrong” order of calling? Some languages have, therefore, explored invocation in
the downward direction by default. gbeta is a modern programming

language that supports inner,
as well as many other
interesting features. It is also
interesting to consider
combining both directions.

32.4.5 Mixins and Traits

Let’s return to our “blobs”.
When we write a class in Java, what are we really defining between the

opening and closing braces? It is not the entire class: that depends on the parent
that it extends, and so on recursively. Rather, what we define inside the braces is
a class extension. It only becomes a full-blown class because we also identify the
parent class in the same place.

Naturally, we should ask: Why? Why not separate the act of defining an exten-
sion from applying the extension to a base class? That is, suppose instead of
class C extends B { ... }
we instead write:
classext E { ... }
and separately
class C = E(B);
where B is some already-defined class.

This recovers what we had before, but the function-application-like syntax is
meant to be suggestive: we can “apply” this extension to several different base
classes. Thus:
class C1 = E(B1);

http://www.daimi.au.dk/~eernst/gbeta/
http://www.cs.utah.edu/plt/publications/oopsla04-gff.pdf
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class C2 = E(B2);
and so on. What we have done by separating the definition of E from that of the
class it extends is to liberate class extensions from the tyranny of the fixed base
class. We have a name for these extensions: they’re called mixins.The term “mixin” originated in

Common Lisp, where it was a
particular pattern of using
multiple inheritance. Lipstick
on a pig.

Mixins make class definition more compositional. They provide many of the
benefits of multiple-inheritance (reusing multiple fragments of functionality) but
within the aegis of a single-inheritance language (i.e., no complicated rules about
lookup order). Observe that when desugaring, it’s actually quite easy to add mixins
to the language. A mixin is primarily a “function over classes”; because we have
already determined how to desugar classes, and our target language for desugaring
also has functions, and classes desugar to expressions that can be nested inside
functions, it becomes almost trivial to implement a simple model of mixins.This is a case where the greater

generality of the target language
of desugaring can lead us to a
better construct, if we reflect it
back into the source language.

In a typed language, a good design for mixins can actually improve object-
oriented programming practice. Suppose we’re defining a mixin-based version of
Java. If a mixin is effectively a class-to-class function, what is the “type” of this
“function”? Clearly, a mixin ought to use interfaces to describe what it expects
and provides. Java already enables (but does not require) the latter, but it does not
enable the former: a class (extension) extends another class—with all its members
visible to the extension—not its interface. That means it obtains all of the parent’s
behavior, not a specification thereof. In turn, if the parent changes, the class might
break.

In a typed mixin language, we can instead write
mixin M extends I { ... }
where I is an interface. Then M can only be applied to a class that satisfies the
interface I, and in turn the language can ensure that only members specified in
I are visible in M. This follows one of the important principles of good software
design.“Program to an interface, not an

implementation.” —Design
Patterns

A good design for mixins can go even further. A class can only be used once in
an inheritance chain, by definition (if a class eventually referred back to itself, there
would be a cycle in the inheritance chain, causing potential infinite loops). In con-
trast, when we compose functions, we have no qualms about using the same func-
tion twice (e.g.: (map ... (filter ... (map ...)))). Is there value to
using a mixin twice?There certainly is! See sections

3 and 4 of Classes and Mixins. Mixins solve an important problem that arises in the design of libraries. Sup-
pose we have a dozen features that can be combined in different ways. How many
classes should we provide? It is obviously impractical to generate the entire com-
binatorial explosion of classes. It would be better if the devleoper could pick and
choose the features they care about. This is precisely the problem that mixins solve:
they provide class extensions that the developers can combine, in an interface-
preserving way, to create just the classes they need.Mixins are used extensively in

the Racket GUI library. For
instance,
color:text-mixin
consumes basic text editor
interfaces and implements the
colored text editor interface.
The latter is iself a basic text
editor interface, so additional
basic text mixins can be applied
to the result.

http://www.cs.brown.edu/~sk/Publications/Papers/Published/fkf-classes-mixins/


32.5. OBJECT CLASSIFICATION AND OBJECT EQUALITY 441

Exercise

How does your favorite object-oriented library solve this problem?

Mixins do have one limitation: they enforce a linearity of composition. This
strictness is sometimes misplaced, because it puts a burden on programmers that
may not be necessary. A generalization of mixins called traits says that instead of
extending a single mixin, we can extend a set of them. Of course, the moment we
extend more than one, we must again contend with potential name-clashes. Thus
traits must be equipped with mechanisms for resolving name clashes, often in the
form of some name-combination algebra. Traits thus offer a nice complement to
mixins, enabling programmers to choose the mechanism that best fits their needs.
A handful of languages, such as Racket, therefore provide both traits and mixins.

32.5 Object Classification and Object Equality

Previously [section 21.6], we have seen three different kinds of equality opera-
tions. For the purpose of this discussion, we will ignore the distinction between
equal-now and equal-always, focusing on the fact that both are primarily
structural (equal-now being purely so). Extended to objects, this would check
each member recursively, perhaps ignoring methods in languages that cannot com-
pare them for equality, or comparing them using reference equality.

This leaves us with the very fine-grained and unforgiving identical, and
the very coarse-grained and perhaps overly forgiving equal-now. Why is struc-
tural equality overly forgiving? Because two completely unrelated objects that just
happened to have the same member names and types could end up being regarded
equal: as a famous example in the objects community has it, draw is a meaningful
method of both user interfaces and cowhands.

Therefore, some systems provide an equality predicate “in the middle”: it is
still fundamentally structural, but it discriminates between objects that were not
“made the same way”. The typical notion of construction is associated with a
class: all objects made from a certain class are considered to be candidates for
(structural) equality, but objects made from different classes (for some notion of
“different”) are immediately ruled unequal independent of their structure (which
may in fact be identical).

In the special case where classes are named, first-order entities, this is called
nominal equality: an equality based on names. However, it does not have to de-
pend on names, nor even on first-order classes. Some languages have dynamic tag
creators—known to the language—called brands. Each branding operation places In keeping with the cowhand

theme.a tag on an object. The built-in equality primitives then check for brands being

http://www.eecs.northwestern.edu/~robby/pubs/papers/aplas2006-fff.pdf
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identical; when this condition is met, they revert to structural equality (which may
involve additional brand-checking during recursion).

32.6 Types for Objects

Having studied various programming mechanisms, we now turn our focus to types
for them. First [section 32.6.1] we will relax the notion of invariance for sub-
stitutability [section 27.2]. Then, we will discuss how new notions of equality
[section 32.5] can impact subtyping to create a new class of types [section 32.6.3].

32.6.1 Subtyping

Consider two object types. The first we will call Add1Sub1:

type Add1Sub1 =
{ add1 :: (Number -> Number),

sub1 :: (Number -> Number) }
This is a type for objects that have two members, add1 and sub1, of the given
types. The question we need to answer is, precisely what objects can be given this
type?

To understand this, let us consider another, related type, which we will call
Arith:

type Arith =
{ add1 :: (Number -> Number),

sub1 :: (Number -> Number),
plus :: (Number, Number -> Number),
mult :: (Number, Number -> Number) }

Notice that two members have the same name and the same type, but there are two
more members (plus and mult).

Consider a function designed to work with Arith values:

fun f(a :: Arith) -> Number:
a.plus(2, 3)

end

Is it okay to pass a value of type Add1Sub1 to f? Of course not: the function
invokes the member plus, which the type annotation on a says it can expect to
find; but if the value passed in does not have this member, this would result in
a run-time member not found error, which is precisely what the type system was
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trying to avoid. Therefore, we cannot substitute a value of type Add1Sub1 in a
context expecting a Arith.

But how about in the other direction? This is entirely reasonable: the con-
text is expecting a Add1Sub—and hence not using any more than what that type
promises. Because Arith supplies everything expected by Add1Sub1, it is okay
to provide a Arith value for a Add1Sub1.

This is our first example of subtyping. We say that Arith is a subtype of
Add1Sub1 because we can supply an Arith value in any context that expected a
Add1Sub1 value. Specifically, because this involves dropping some members—
i.e., making the object “less wide”—this is called width subtyping.

The essence of subtyping is a relation, conventionally written as <:, between
pairs of types. We say S <: T if a value of type S can be given where a value of
type T is expected, and call S the subtype and T the supertype. Therefore, in the
above example, Arith <: Add1Sub1 and Arith is a subtype of Add1Sub1. Later [section 32.6.3], we will

talk about how subtypes
correspond to subclasses. But
for now observe that we’re
talking only about objects,
without any reference to the
existence of classes.

It is useful (and usually accurate) to take a subset interpretation: if the values of S
are a subset of T, then an expression expecting T values will not be unpleasantly
surprised to receive only S values.

Exercise

Why is subtyping a relation and not a function?

In other words:

{ add1 : (Number -> Number), { add1 : (Number -> Number),
sub1 : (Number -> Number), <: sub1 : (Number -> Number) }
plus : (Number, Number -> Number),
mult : (Number, Number -> Number) }

This may momentarily look confusing: we’ve said that subtyping follows set inclu-
sion, so we would expect the smaller set on the left and the larger set on the right.
Yet, it looks like we have a “larger type” (certainly in terms of character count) on
the left and a “smaller type” on the right.

To understand why this is sound, it helps to develop the intuition that the
“larger” the type, the fewer values it can have. Every object that has the four
members on the left clearly also has the two members on the right. However, there
are many objects that have the two members on the right that fail to have all four on
the left. If we think of a type as a constraint on acceptable value shapes, the “big-
ger” type imposes more constraints and hence admits fewer values. Thus, though
the types may appear to be of the wrong sizes, everything is well because the sets
of values they subscribe are of the expected sizes.
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As you might expect, there is another important form of subtyping, which is
within a given member. This simply says that any particular member can be sub-
sumed to a supertype in its corresponding position. For obvious reasons, this form
is called depth subtyping.

Exercise

Construct two examples of depth subtyping. In one, give the field itself an
object type, and use width subtyping to subtype that field. In the other, give
the field a function type.

The combination of width and depth subtyping cover the most interesting cases
of object subtyping. A type system that implemented only these two would, how-
ever, needlessly annoy programmers. Other convenient rules include the ability
to permute names, reflexivity (every type is a subtype of itself, which gives us
invariance for free, and lets us interpret the subtype relationship as subset), and
transitivity.

Subtyping has a pervasive effect on the type system. We have to reexam-
ine every kind of type and understand its interaction with subtyping. For base
types, this is usually quite obvious: disjoint types like Number, String, etc.,
are all unrelated to each other. (In languages where one base type is used to
represent another—for instance, in some scripting languages numbers are merely
strings written with a special syntax, and in other languages, Booleans are merely
numbers—there might be subtyping relationships even between base types, but
these are not common.) However, we do have to consider how subtyping interacts
with every single compound type constructor.

In fact, even our very diction about types has to change. Suppose we have an
expression of type T. Normally, we would say that it produces values of type T.
Now, we should be careful to say that it produces values of up to or at most T,
because it may only produce values of a subtype of T. Thus every reference to a
type should implicitly be cloaked in a reference to the potential for subtyping. To
avoid pestering you we will refrain from doing this, but be wary that it is possible
to make reasoning errors by not keeping this implicit interpretation in mind.

Subtyping Functions

Our examples above have been carefully chosen to mask an important detail: the
subtyping of functions. To understand this, we will build up an example.

Consider a hypothetical language with a new type called Boolean01, where
true is just an alias for 1 and false is an alias for 0. Thus, in this language,
Boolean01 <: Number; all Boolean01 values are of type Number, but not
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all Number values are Boolean01 (indeed, most are not). In this language, we
can write some functions:

fun b2n(b :: Boolean01) -> Number:
if b == 0: # alias for false

1
else if b == 1: # alias for true
0

else:
raise(’not valid number as Boolean01’)

end
end

fun n2b(n :: Number) -> Boolean01:
if n == 0:

false # alias for 0
else if n == 1:

true # alias for 1
else:

raise(’no valid Boolean01 for number’)
end

end

fun n2n(n :: Number) -> Number:
n + 1

end

fun b2b(b :: Boolean01) -> Boolean01:
if b == 0: # alias for false

true # alias for 1
else if b == 1: # alias for true
false # alias 0

else:
raise(’not valid number as Boolean01’)

end
end
Let us also define four types:

type N2N = (Number -> Number)
type B2B = (Boolean01 -> Boolean01)
type N2B = (Number -> Boolean01)
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type B2N = (Boolean01 -> Number)
We can now ask the following question: which of these types are subtypes of the
other? In more concrete terms, which of these functions can be safely substituted
for which others?

We might expect a rule as follows. Because Boolean01 <: Number (in
our imaginary system), a (Boolean01 -> Boolean01) function is a subtype
of a (Number -> Number) function. This is a natural conclusion to arrive
at...but wrong, as we will soon see.

To make this concrete, assume we have a function p that consumes and uses
one of these functions. The function could be a member in an object, though for
the purposes of understanding the basic problem, we don’t need that: we can focus
just on the function types. Thus, we have something like

fun p(op :: (A -> B)) -> B:
op(a-value)

end

where A and B are going to be all the combinations of Number and Boolean01,
and assume that a-value has whatever the A type is. For each type for op (col-
umn headers), we will ask which of the above functions (row headers) we can
safely pass to p.

Do Now!

Stop and try to fill out this table first.

N2N N2B B2N B2B
n2n yes (identical) no (range) yes (domain) no (range)
n2b yes (range) yes (identical) yes (domain and range) yes (domain)
b2n no (domain) no (domain and range) yes (identical) no (range)
b2b no (domain) no (domain) yes (range) yes (identical)

In each cell, “yes” means the function on the left can be passed in when the type
at the top is expected, while “no” means it cannot. Parentheses give the reason:
“identical” means they are the same type (so of course they can be passed in); in
the “yes” case it says where subtyping needed to apply, while in the “no” case
where the type error is.

Let us consider trying to pass n2n to a N2B annotation (for op). Because the
return type of p is Boolean01, whatever uses p(n2n) assumes that it gets only
Boolean01 values back. However, the function n2n is free to return any numeric
value it wants: in particular, given 1 it returns 2, which does not correspond to
either Boolean01. Therefore, allowing this parameter can result in an unsound
program execution. To prevent that, we must flag this as a type error.
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More generally, if the type of the emph formal parameter promises Boolean01,
the actual function passed had better return only Boolean01; but if the type of
the formal is Number, the actual can safely return Boolean01 without causing
trouble. Thus, in general, for (A -> B) <: (C -> D), we must have that
B <: D. In other words, the subtyping of the range parallels the subtyping of
the function itself, so we say the range position is covariant (“co-” meaning “to-
gether”).

Now we get to the more interesting case: the domain. Consider why we can
pass n2n where a B2N is expected. Inside the body of op, a-value can only be
a Boolean01, because that is all the type permits. Because every Boolean01
is a Number, the function n2n has no trouble accepting it.

In contrast, consider passing b2nwhere an N2N is expected. Inside op, a-value
can evaluate to any number, because op is expected (by the type annotation on p)
to be able to accept it. However, b2n can accept only two numbers; everything
else results in an error. Hence, if the type-checker were to allow this, we could get
a run-time error even though the program passed the type-checker.

From this, the moral we derive is that for the domain position, the formal must
be a subtype of the actual. The formal parameter bounds what values op can ex-
pect; so long as the actual can take a set of values at least as large, there will be
no problem. Thus, for (A -> B) <: (C -> D), we must have that C <: A.
The subtyping of the domain goes in the direction opposite to that of the subtyp-
ing of the function itself, so we say the range position is contravariant (“contra-”
meaning “opposite”).

Putting together these two rules, (A -> B) <: (C -> D) when C <: A
and B <: D.

Subtyping and Information Hiding

Consider an object o that implements the Add1Sub1 type. By the nature of width
subtyping, there is absolutely nothing preventing the object from also having mem-
bers named plus and mult of the right type. This raises a question: if we write

o :: Add1Sub1 = ...
where ... is an object with plus and mult, and then we attempt to pass o to f,
what should happen?

In a strictly dynamic interpretation—e.g., if this program were written without
any annotations at all—it would work perfectly fine. Doing so statically, however,
means that we have violated our intuition about what these annotations mean. In
general, it is going to be undecidable whether an object of type Add1Sub1 actually
has the additional Arith members in it, so it is safest to reject programs that
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attempt to use Add1Sub1-annotated values as Arith ones. The natural type
system will prevent us from passing o to f.

In short, the static type system becomes a mechanism for information hiding.
By leaving out some members in type descriptions, we effectively hide the fact that
they exist. For instance, one could create an object

crypto =
{ private-key: ... ,

public-key: ...,
decrypt: fun(msg): ... end,
encrypt: fun(plain-text): ... end }

and ascribe it the type

type PK =
{ public-key: Number,

encrypt: (String -> String) }
as follows:

for-dist :: PK = crypto
Then all references to for-dist can only use the public interface and have no
way to access the private-key or decrypt members, but those that have
access to the crypto object can use those members. Provided access to crypto
is provisioned carefully, the language will ensure the privacy of these two sensitive
members.

However, this becomes more tricky in a system that is not purely statically
typed, including ones where a typed language can interoperate with an untyped
one. In an untyped language there are no annotations, so there is nothing prevent-
ing the plus member of o or the decrypt member of for-dist from being
accessed: after all, those members really are present in the underlying object. Thus,
it is common when “exporting” a typed object to any kind of untrusted or unan-
notated context to create a proxy object; it would be as if the developer wrote the
following by hand:

fun proxy-for-crypto(c):
{ public-key: c.public-key,

encrypt: c.encrypt }
end

proxy-dist = proxy-for-crypto(for-dist)
It is proxy-dist that is then provided to dangerous contexts. Since the resulting
object really contains only two fields, and the underlying object is only visible in
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lexical scope (c), so long as the language does not provide a means to inspect or
traverse the scope (an assumption not guaranteed by all languages!), the untyped
or dangerous context cannot get access to the private content.

Implementing Subtyping

Of course, these rules assume that we have modified the type-checker to respect
subtyping. The essence of subtyping is a rule that says, if an expression e is of
type S, and S <: T, then e also has type T. While this sounds intuitive, it is also
immediately problematic for two reasons:

• Until now all of our type rules have been syntax-driven, which is what en-
abled us to write a recursive-descent type-checker. Now, however, we have
a rule that applies to all expressions, so we can no longer be sure when to
apply it.

• There could be many levels of subtyping. As a result, it is no longer obvious
when to “stop” subtyping. In particular, whereas before type-checking was
able to calculate the type of an expression, now we have many possible types
for each expression; if we return the “wrong” one, we might get a type error
(due to that not being the type expected by the context) even though there
exists some other type that was the one expected by the context.

What these two issues point to is that the description of subtyping we are giving
here is fundamentally declarative: we are saying what must be true, but not show-
ing how to turn it into an algorithm. For each actual type language, there is a less or
more interesting problem in turning this into algorithmic subtyping: an actual al-
gorithm that realizes a type-checker (ideally one that types exactly those programs
that would have typed under the declarative regime, i.e., one that is both sound and
complete).

32.6.2 Types for Self-Reference

Remember that one of the essential features of many object systems is having a
reference, inside a method, to the object on which it was invoked: i.e., a self-
reference [section 32.2.6]. What is the type of this self identifier?

Consider the type Add1Sub1 we described earlier. To be entirely honest, the
implementation of add1 and sub1—to be methods—must take an extra parameter
that will be a self-reference. What is the nature of this self-referential parameter?
It is clearly an object; it clearly has two methods, add1 and sub1 (at least up to
subtyping); and each of those methods takes two parameters, one a number and...
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You see where this is going.
Object types are therefore typically recursive types: the type world’s equivalent

of rec [section 21.3.2]. Typically, they are written µ (“mu”) instead of rec; thus:

type Add1Sub1 =
µ T . { add1 :: (T, Number -> Number),

sub1 :: (T, Number -> Number) }
Read the right-hand side as “construct a recursive type T such that it (a) is an object,
(b) has two members add1 and sub1, and (c) each member has two parameters,
the first of which is the type being defined” (and so on).

Unfortunately, recursive types are not as simple as they look. Note that the
above type does not have a “base case”; thus, it is a finite representation of an infi-
nite type (which is exactly what we want, because we can write an infinite number
of self applications). Therefore, when it comes to checking for the equality of
two recursive types, we encounter complications, which are beyond the scope of
this study.See Pierce’s Types and

Programming Languages for
details.

32.6.3 Nominal Types

Earlier [section 32.5] we read about nominal equality, where classes are made to aid
in equality comparisons. In some typed languages—Java being a poster-child—
classes carry an even heavier load: they are also used as the basis for the type
system, rather than structural types.

The basic idea is that each class (or other nominal entity) defines an entirely
new type, even if the type-structure of its members is exactly the same as that of
some other type. Then, type equality mirrors nominal equality, but trivially: if
two values have the same type they must have the same structure, and if they have
different types then their structure doesn’t matter (even if it’s identical). Thus, type
equality reduces to a constant-time check of whether the classes are the same.

Nominal types have one more advantage. They effectively make it straight-
forward to write recursive types without wrestling with µ. Consider the following
Java class definition:
class Add1Sub1 {

public int add1(int n) { ... }
public int sub1(int n) { ... }

}
Implicit in these two method definitions are this parameters. But what is the
type of this? It’s just Add1Sub1: the keyword class not only introduces
a new name but automatically makes it a recursive binding. Thus, programmers
can comfortably refer to and use nominal types without having to dwell on their
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true meaning (as recursive types) or their equality (because it’s by name rather
than structure). Thus, nominal types, for all their inflexibility, do offer an elegant
solution to a particular set of language design constraints.

It is worth noting that in Java, inheritance (unfortunately) corresponds to sub-
typing. As we go up the inheritance chain a class has fewer and fewer members
(width subtyping), until we reach Object, the supertype of all classes, which has
the fewest. Thus for all class types C in Java, C <: Object. The interpretation Somewhat confusingly, the

terms narrowing and widening
are sometimes used, but with
what some might consider the
opposite meaning. To widen is
to go from subtype to
supertype, because it goes from
a “narrower” (smaller) to a
“wider” (bigger) set. These
terms evolved independently,
but unfortunately not
consistently.

of subtyping as subsets holds: every object that has a type lower in an inheritance
hierarchy also has a type higher in the hierarchy, but not vice versa. When it comes
to depth subtyping, however, Java prefers types to be invariant down the object
hierarchy because this is a safe option for conventional mutation.
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Chapter 33

Control Operations

The term control refers to any programming language instruction that causes evalu-
ation to proceed, because it “controls” the program counter of the machine. In that
sense, sequential execution of instructions is “control”, as is even an arithmetic
expression (and in the presence of state, this control is laid bare through the order
in which effects occur); other forms of control found in all ordinary programming
languages include function calls and returns. However, in practice we use the term
to refer primarily to those operations that cause non-local transfer of control be-
yond that of mere functions and procedures, usually starting with exceptions. We
will study such operations in this chapter.

As we study the following control operators, it’s worth remembering that even
without them, we still have languages that are Turing-complete, so these control
operations provide no more “power”. Therefore, what control operators do is
change and potentially improve the way we express our intent, and therefore en-
hance the structure of programs. Thus, it pays to being our study by focusing on
program structure.

33.1 Control on the Web

Let us begin our study by examining the structure of Web programs. Consider the
following program: Henceforth, we’ll call this our

“addition server”. You should,
of course, understand this as a
stand-in for more sophisticated
applications. For instance, the
two prompts might ask for
starting and ending points for a
trip, and in place of addition we
might compute a route or
compute airfares. There might
even be computation between
the two steps: e.g., after
entering the first city, the airline
might prompt us with choices
of where it flies from there.

print(read-number("First number")
+ read-number("Second number"))

This is based on a hypothetical a read-number function that, when run, sus-
pends program execution, prompts for a number and, when the user enters one,
resumes computation. You might find it excessively pedantic that I’d mention the

453
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suspension and resumption of computation, but this detail will prove to be abso-
lutely central to our study, so don’t gloss over these steps!

Now suppose we want to run this on a Web server. We immediately encounter
a difficulty: the structure of server-side Web programs is such that they generate a
single Web page—such as the one asking for the first number—and then halt. As a
result, the rest of the program—which in this case prompts for the second number,
then adds the two, and then prints that result, is lost.

Do Now!

Why do Web servers behave in such a strange way?

There are at least two reasons for this behavior: one perhaps historical, and the
other technical. The historical reason is that Web servers were initially designed
to serve pages, i.e., static content. Any program that ran had to generate its output
to a file, from which a server could offer it. Naturally, developers wondered why
that same program couldn’t run on demand. This made Web content dynamic.
Terminating the program after generating a single piece of output was the simplest
incremental step in transitioning the Web from “pages” to “programs”.

The more important reason—and the one that has stayed with us—is techni-
cal. Imagine our addition server has generated its first prompt. The pending com-
putation is not trivial: it must remember the first response, generate the second
prompt, perform the addition, and then display the result. This computation must
suspend waiting for the user’s input. If there are millions of users, then millions
of computations must be suspended (imagine threads running in virtual machines,
each consuming memory for local data), creating an enormous performance prob-
lem. Furthermore, suppose a user does not actually complete the computation—
analogous to searching at an on-line bookstore or airline site, but not completing
the purchase. How does the server know when or even whether to terminate the
computation? Until it does, the resources associated with that computation remain
in use.

Conceptually, therefore, the Web protocol was designed to be stateless: it
would not store state on the server associated with intermediate computations. In-
stead, Web program developers would be forced to maintain all necessary state
elsewhere, and each request would need to be able to resume the computation in
full. In practice the Web has not proven to be stateless, but it still hews in this
direction, and studying the structure of such programs is very instructive.

Now consider client-side Web programs: those that run inside the browser,
written in or compiled to JavaScript. Suppose such a computation needs to com-
municate with a server. The primitive for this is called XMLHttpRequest. The
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user makes an instance of this primitive and invokes its send method to send a
message to the server.

Communicating with a server is not, however, instantaneous: it takes some
time; if the server faces a heavy load, it could take a long time; and indeed, it
may never complete at all, depending on the state of the network and the server.
(These are the same problems faced above by get-number, with a user taking
the place of a server: the user may take a long time to enter a number, or may
never do so at all.) If the send method suspended program execution, the entire
(client-side) application would be blocked, indefinitely. You would not want to use
such a program.

To keep the application responsive, the designers of XMLHttpRequest there-
fore had a choice. They could make JavaScript multi-threaded, but because the
language also has state, programmers would have to confront all the problems of
combining state with concurrency. In particular, beginners would have to wrestle
with a combination of features that even experienced programmers do not use well,
probably resulting in numerous deadlocked Web sites.

Instead, JavaScript is single-threaded: i.e., there is only one thread of execution
at a time. When the send method is invoked, JavaScript instead suspends the Due to the structuring problems

this causes, there are now
various proposals to, in effect,
add “safe” threads to
JavaScript. The ideas described
in this chapter can be viewed as
an alternative that offer similar
structuring benefits.

current computation and returns control to an event loop, which can now invoke
other suspended computations. Devlopers associate a callback with the send.
When (and if) a response returns, this callback is added to the queue of suspended
computations, thereby enabling it to resume.

This callback needs to embody the rest of the processing of that request. Thus,
for entirely different reasons—not performance, but avoiding the problems of syn-
chronization, non-atomicity, and deadlocks—the client-side Web has evolved to
impose essentially the same problems of program structure on developers as the
server-side Web. Let us now better understand that structure.

33.1.1 Program Decomposition into Now and Later

Let us consider what it takes to make our addition program work in a stateless
setting, such as on a Web server. First we have to determine the first interaction.
This is the prompt for the first number, because Pyret evaluates arguments from
left to right. It is instructive to divide the program into two parts: what happens to
generate the first interaction (which can run right now), and what needs to happen
after it (which must be “remembered” somehow). The former is easy:

read-number("First number")
We’ve already explained in prose what’s left, but now it’s time to write it as a
program. It seems to be something like:
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print(<the result from the first interaction>
+ read-number("Second number"))

A Web server can’t execute the above, however, because it evidently isn’t a pro-
gram. We instead need some way of writing this as one.

Let’s observe a few characteristics of this computation:

• It needs to be a syntactically valid program.

• It needs to stay suspended until the request comes in.

• It needs a way—such as a parameter—to refer to the value from the first
interaction.

Put together these characteristics and we have a clear representation—a function:

lam(v1):
print(v1 + read-number("Second number"))

end

33.1.2 A Partial Solution

On the Web, there is an additional wrinkle: each Web page with input elements
needs to refer to a program stored on the Web, which will receive the data from the
form and process it. This program is named in the action field of a form. Thus,
imagine that the server generates a fresh label, stores the above function in a table
associated with that label, and refers to the label in the action field. When (and
if) the client actually submits the form the server extracts the associated function,
supplies it with the form’s values, and thus resumes execution.

Do Now!

Is the solution above stateless?

Let’s imagine that we have a custom Web server that maintains the above ta-
ble. In such a server, we might have a special version of read-number—call it
read-number-suspend—that records the rest of the program:

read-number-suspend("First number",
lam(v1):
print(v1 + read-number("Second number"))

end)
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Unfortunately, this is not sufficient. The moment we perform the second read-number,
we’re back to having forgotten the rest of the computation. Therefore, the second
one needs to be converted to use read-number-suspend, too. What is the rest
of its computation?

lam(v2):
print(v1 + v2)

end

where v1 is the value from the first computation. Putting together the pieces, the
fully-translated program is

read-number-suspend("First number",
lam(v1):

read-number-suspend("Second number",
lam(v2):

print(v1 + v2)
end)

end)

Notice how the inner closure depends on being nested inside the outer one, so that
v1 is bound in the addition. Also observe how the addition and printing got moved
from initiating “immediately” after the first number was provided to waiting until
the second number was also available.

Exercise

Ascribe types to the above computation. Also determine the type of the Web
server and of the table holding these procedures.

33.1.3 Achieving Statelessness

We haven’t actually achieved statelessness yet, because we have this large table
residing on the server, with no clear means to remove entries from it. It would be
better if we could avoid the server state entirely. This means we have to move the
relevant state to the client.

There are actually two ways in which the server holds state. One is that we
have reserved the right to create as many entries in the hash table as we wish.
This makes the server storage space proportional to the number of interactions—
a dynamic value—rather than the size of the program, a static value with a clear
bound. The other is what we’re storing in the table: honest-to-goodness closures,
each of which might be different and closed over copious amounts of state.
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Let’s start by eliminating the closure. Instead, let’s have each of the functions
be named and at the top-level (which immediately forces us to have only a fixed
number of them, bounded by the size of the program):

read-number-stateless("First number", prog-1)

fun prog-1(v1):
read-number-stateless("Second number", prog-2)

end

fun prog-2(v2):
print(v1 + v2)

end

Observe how each code block refers only to the name of the next procedure, rather
than to a real closure. The value of the argument comes from the form. There’s
just one problem: v1 in prog-2 is a free identifier!

The way to fix this problem is, instead of creating a closure after one step, to
send v1 to the client to be stored there. Where do we store this? The browser
offers two mechanisms for doing this: cookies and hidden fields. Which one do we
use?

33.1.4 Interaction with State

One way to avoid this problem is to find a channel of communication between what
follows the first and second prompts. Recall that we have noted that state provides
such a channel of communication [section 31.5]. Therefore, we could use a top-
level variable to communicate the value of v1. To be suggestive, we’ll call this
variable cookie:

var cookie = "dummy initial value"

read-number-suspend("First number",
lam(v1):
cookie := v1
read-number-suspend("Second number",

lam(v2):
print(cookie + v2)

end)
end)

from which we can eliminate closures easily:
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var cookie = "dummy initial value"

read-number-stateless("First number", prog-1)

fun prog-1(v1):
cookie := v1
read-number-stateless("Second number", prog-2)

end

fun prog-2(v2):
print(cookie + v2)

end

Unfortunately, this means every intermediate computation will share the same
cookie variable. If we open up two concurrent windows and try to add different
first numbers, the latest first number will always reside in cookie, so the other
window is going to see unpredictable results.

This, of course, is precisely what happens on the Web. The browser’s cookies These problems are not
hypothetical. For instance, see
Section 2 of Modeling Web
Interactions and Errors.

are merely a client-side implementation of the store. Thus, Web sites that store
their information in cookies are susceptible to exactly this problem: two concurrent
interactions with the site will end up interfering with one another. Therefore, the
pervasive use of cookies on Web sites, induced by Web programming traditions,
results in actively less usable sites.

In contrast, the Web offers another mechanism for storing information on the
client: the hidden field. Because they are local to each page, and each page corre-
sponds to a closure, they are precisely analogous to a closure’s environment! Thus,
instead of storing the value of v1 in a single, global cookie, if we were to store it in
a hidden field in the response page, then two different response pages would have
different values in their hidden field, which would be sent back to the server on the
next request—thereby avoiding the interference problem entirely.

33.2 Conversion to Continuation-Passing Style

The style of functions we’ve been writing has a name. Though we’ve presented
ideas in terms of the Web, we’re relying on a much older idea: the functions are
called continuations, and this style of programs is called continuation-passing style
(CPS). This is worth studying in its own right, because it is the basis for studying a We will take the liberty of using

CPS as both a noun and verb: a
particular structure of code and
the process that converts code
into it.

variety of other non-trivial control operations—such as generators.
Earlier, we converted programs so that no Web input operation was nested in-

side another. The motivation was simple: when the program terminates, all nested

http://cs.brown.edu/~sk/Publications/Papers/Published/kfgf-model-web-inter-error/
http://cs.brown.edu/~sk/Publications/Papers/Published/kfgf-model-web-inter-error/
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computations are lost. A similar argument applies, in a more local sense, in the case
of XMLHttpRequest: any computation depending on the result of a response
from a Web server needs to reside in the callback associated with the request to the
server.

In fact, we don’t need to transform every expression. We only care about ex-
pressions that involve actual Web interaction. For example, if we computed a more
complex mathematical expression than just addition, we wouldn’t need to trans-
form it. If, however, we had a function call, we’d either have to be absolutely cer-
tain the function didn’t have any Web invocations either inside it, or in the functions
in invokes, or the ones they invoke...or else, to be defensive, we should transform
them all. Therefore, we have to transform every expression that we can’t be sure
performs no Web interactions.

The heart of our transformation is therefore to turn every function, f, into one
with an extra argument. This extra argument is the continuation, which represents
the rest of the computation. f, instead of returning a value, instead passes the value
it would have returned to its continuation. Thus, the continuation is itself a function
of one argument; this argument represents the value that would have been returned
by f. A function returns a value to “pass it to the rest of the computation”; CPS

makes this explicit, because invoking a continuation (in place of returning a value)
precisely passes it to the function representing the rest of the computation.

CPS is a general transformation, which we can apply to any program. Because
it’s a program transformation, we can think of it as a special kind of desugaring
that transforms programs within the same language: from the full language to a
more restricted version that obeys the pattern we’ve been discussing. As a result,
we can reuse an evaluator for the full language to also evaluate programs in the CPS

subset.

33.2.1 Implementation by Desugaring

Let us therefore implement CPS as a source-to-source transformation. Thought of
as a function, it consumes and returns ExprC expressions, but the output expres-
sions will have the peculiar structure we have seen above, and will therefore be a
strict subset of all ExprC expressions.

Exercise

Put differently, the comment about “strict subset” above means that certain
ExprC expressions are not legal in the output that CPS generates. Provide
examples.

<cps-trans> ::=
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fun cps(e :: ExprC) -> ExprC:
cases (ExprC) e:
<cps-trans-numC>
<cps-trans-plusC>
<cps-trans-idC>
<cps-trans-fdC>
<cps-trans-appC>

end
end
Our representation in CPS will be to turn every expression into a procedure of

one argument, the continuation. The converted expression will eventually either
supply a value to the continuation or will pass the continuation on to some other
expression that will—by preserving this invariant inductively—supply it with a
value. Applied to Pyret, all output from CPS will look like fun (k): ... end.
Since we are applying CPS to Paret instead, it will look like fdC("k", ...).
Either way, note that lexical scope keeps these k’s from clashing with any other
identifiers of the same name.

First let’s dispatch with the easy case, which is atomic values. Because we
already have a value, we are ready to “return” it, which we do by supplying it to
the continuation:
<cps-trans-numC> ::=
| numC(_) => fdC("k", appC(idC("k"), e))

and similarly:
<cps-trans-idC> ::=
| idC(_) => fdC("k", appC(idC("k"), e))

Exercise

Extend the language to handle conditionals.

Exercise

Extend the language to support mutable state as well. Does this have any
impact on the CPS process, i.e., does it change the pattern of conversion?

Next, let’s handle binary operators. We have seen the essence of this transfor-
mation earlier, applied to the Web:
<cps-trans-plusC> ::=

| plusC(l, r) =>
fdC("k",
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appC(cps(l),
fdC("l-v",

appC(cps(r),
fdC("r-v",

appC(idC("k"), plusC(idC("l-v"), idC("r-v"))))))))
This assumes that the primitive operator, in this case addition, does not itself need
to be transformed; on the Web, for instance, it’s a safe bet that performing arith-
metic does not involve any Web interactions.Unless, of course, the

arithmetic is part of a
cryptographic algorithm, in
which case it may be necessary
to notify the NSA of the results.

Finally, we have function definition and application.

Do Now!

It’s tempting to think that, because function are just values, they too can be
passed unchanged to the continuation. Why is this not true?

Exercise

Before proceeding, alter the underlying language to also permit two-argument
function definitions and, correspondingly, applications. Name the definitions
fd2C and the applications app2C.

For an application we have to evaluate both the function and argument expres-
sions. Once we’ve obtained these, we are ready to apply the function. Therefore,
it is tempting to write
<cps-trans-appC-try-1> ::=

| appC(f, a) =>
fdC("k",

appC(cps(f),
fdC("f-v",

appC(cps(a),
fdC("a-v",

appC(idC("k"), appC(idC("f-v"), idC("a-v"))))))))

Do Now!

Do you see why this is wrong?

The problem is that, though the function is a value, that value is a closure with
a potentially complicated body: evaluating the body can, for example, result in
further Web interactions, at which point the rest of the function’s body, as well as
the pending k(...) (i.e., the rest of the program), will all be lost. To avoid this,
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we have to supply k to the function’s value, and let the inductive invariant ensure
that k will eventually be invoked with the value of applying f-v to a-v:
<cps-trans-appC> ::=

| appC(f, a) =>
fdC("k",

appC(cps(f),
fdC("f-v",

appC(cps(a),
fdC("a-v",

app2C(idC("f-v"), idC("a-v"), idC("k")))))))
A function is itself a value, so it should be returned to the pending computation.

The application case above, however, shows that we have to transform functions
to take an extra argument, namely the continuation at the point of invocation. This
leaves us with a quandary: which continuation do we supply to the body?

<cps-trans-fdC-try-1> ::=
| fdC(v, b) =>
fdC("k",

appC(idC("k"),
fd2C(v, "dyn-k",

appC(cps(b), ???))))
That is, in place of ???, which continuation do we supply: k or dyn-k?

Do Now!

Which continuation should we supply?

The former is the continuation at the point of closure creation. The latter is
the continuation at the point of closure invocation. In other words, the former
is “static” and the latter is “dynamic”. In this case, we need to use the dynamic
continuation, otherwise something very strange would happen: the program would
return to the point where the closure was created, rather than where it is being
used! This would result in seemingly very strange program behavior, so we wish
to avoid it. Observe that we are consciously choosing the dynamic continuation
just as, where scope was concerned we chose the static environment but where
state was concerned we chose the “dynamic” (namely, most recent) store. Thus
continuations are more like state than they are like lexical binding, a similarity we
will return to later [REF].

<cps-trans-fdC> ::=
| fdC(v, b) =>
fdC("k",

appC(idC("k"),
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fd2C(v, "dyn-k",
appC(cps(b), idC("dyn-k")))))

Do Now!

After you have understood this material, replace "dyn-k"with "k", predict
what should change, and check that it does.

Testing any code converted to CPS is slightly annoying because all CPS terms
expect a continuation. In a real environment, the initial continuation is one that
simply either (a) consumes a value and returns it, or (b) consumes a value and
prints it, or (c) consumes a value, prints it, and gets ready for another computation
(as the prompt in a REPL does). All three of these are effectively just the identity
function in various guises. Thus, the following definition is helpful for testing:

fun icps(e):
id-cps = fdC("v", idC("v"))
interp(appC(cps(e), id-cps), mt-env)

end

For instance,

icps(plusC(numC(5), appC(quad, numC(3)))) is numV(17)
icps(multC(appC(c5, numC(3)), numC(4))) is numV(20)
icps(plusC(numC(10), appC(c5, numC(10)))) is numV(15)

33.2.2 Understanding the Output

The output of this transformation takes some getting used to. Consider a very
simple example:

cps(plusC(numC(1), numC(2)))
This evaluates to

fdC("k",
appC(fdC("k",

appC(idC("k"), numC(1))),
fdC("l-v",

appC(fdC("k",
appC(idC("k"), numC(2))),

fdC("r-v",
appC(idC("k"),

plusC(idC("l-v"), idC("r-v"))))))))
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For (slightly more) readability, let’s transform this from Paret to Pyret and give it
a name:

f1 =
lam(k):

(lam(shadow k):
k(1)

end)(lam(l-v):
(lam(shadow k):

k(2)
end)(lam(r-v):

k(l-v + r-v)
end)

end)
end

We can then apply it to the identity function to observe that it produces the ex- We had to insert the shadow
declarations to confirm to Pyret
that we really did mean to
shadow these identifiers.

pected answer:

check:
f1(lam(x): x end) is 3

end

We can also rename the different ks to better tell them apart:

f2 =
lam(k):

(lam(k1):
k1(1)

end)(lam(l-v):
(lam(k2):

k2(2)
end)(lam(r-v):

k(l-v + r-v)
end)

end)
end

check:
f2(lam(x): x end) is 3

end

Terms like
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(lam(k1): k1(1) end)(...)
would seem a significant decrease in code readability, but that’s only until you
learn how to “read” such a program. This is equivalent to saying: “k1 represents
the rest of the program after evaluating 1. Evaluate 1, and send its result—the
value 1—to the rest of the computation, namely k1.” This value (1) is bound to
l-v, the identifier representing the left-hand-side value of the addition...which, of
course, is precisely what 1 is.

There is an active line of research in creating better CPS transformations that
produce fewer intermediate function terms; we’ve actually used one of the very
oldest and least sophisticated. The trade-off is in simplicity of desugaring versus
simplicity of output, with the two roughly inversely correlated.

33.2.3 An Interaction Primitive by Transformation

At this point we have identified a problem in program structure; we hypothesized
a better API for it; we transformed an example to use such an API; and then we
generalized that transformation. But now we have a program structure so complex
that it is unclear what use it could possibly be. The point of this transformation
was so that every sub-expression would have an associated continuation, which a
interaction-friendly primitive can use. Let’s see how to do that.

To enable this, we will now add two primitives: read-numC and read-num-webC.
The idea is that user programs (pre-CPS) will use the former, which the transforma-
tion will convert into uses of the latter. Here are the two new language forms:

| read-numC(p :: ExprC)
| read-num-webC(p :: ExprC, k :: ExprC)
The prompt p is assumed to be an expression that evaluates to what we want to
print to the user. In our impoverished language this is a number, which is sufficient
for illustration.

We will assume that cps does not need to handle read-num-webC (because
the end-user is not expected to write this directly), while interp does not need to
handle read-numC (because we want this interpreter to function even in a setting
that periodically terminates input, so it cannot block waiting for a response).

Transforming read-numC into read-num-webC in cps is now easy, be-
cause the continuation argument now gives us exactly what we need:

| read-numC(p) =>
fdC("k",

appC(cps(p),
fdC("p-v",

read-num-webC(idC("p-v"), idC("k")))))



33.2. CONVERSION TO CONTINUATION-PASSING STYLE 467

Now let us build an implementation of read-num-webC in the interpreter
that properly simulates a program that halts.

First we need a way to record the current resumption point. In a real system
this might be remembered on a server or marshaled into a value sent to the client. See this paper for more on how

to marshal the continuation to
the client.

Here, we’ll just record it in a global variable:

var web-continuation = "nothing here yet"
Sure enough, something interesting will be there once we start running the pro-
gram.

Now let us modify the interpreter:

| read-num-webC(p, k) =>
prompt = num-to-string(interp(p, nv).n)
cont = interp(k, nv)
print(’Web interaction: ’ + prompt)
web-continuation := cont
raise(’Program halted waiting for user input’)

First we evaluate the prompt expression to obtain an actual prompt. We then print
this to the screen. Crucially, we then store the current continuation to the global
variable. Finally, we halt the program’s execution; this step is vital in keeping us
honest, so that we don’t accidentally rely on Pyret to resume our computation.

Exercise

Introduce an error in cps and show how halting the program highlights it,
while not doing so silently masks it.

Suppose we run this on the following input program:

››› icps(plusC(read-numC(numC(1)), read-numC(numC(2))))

Pyret prints

Error:

"Program halted waiting for user input"

and the program halts.
At this point, web-continuation contains a genuine, run-time closure (a

closV value). This represents a continuation: a program value representing the

http://cs.brown.edu/~sk/Publications/Papers/Published/mfgkf-web-restructuring-cps-journal/
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rest of the computation. The user now supplies an input in the imagined Web form;Due to a bug in the current
implementation, you can’t
inspect the value of
web-continuation
directly; but you can access it
from a function that closes over
it.

this is provided as the actual argument to the continuation.
We can do this as follows. We extract the function and environment from the

closure, and apply the function to the provided parameter, evaluating this in the
context of the closure:

››› fun run-wc(n):
wc = web-continuation
interp(appC(wc.f, numC(n)), wc.e)

end

Sure enough, using this with 3 as the first input yields:

››› run-wc(3)

Error:

"Program halted waiting for user input"

Oooh, promising! Now we try this again with, say, 4 as the second input, and we
get:

››› run-wc(4)

numV(7)

Et voilà!
Here, then, is the key lesson. By transforming the program into CPS we were

able to write a normal-looking program—read-numC(numC(1)), read-numC(numC(2))—
and run it on an intepreter that truly terminated after each interaction, and were still
able to resume the computation successfully, running to completion without losing
track of computations or of scope errors. That is, we can write the program in
direct style, with properly nested expressions, and a compiler—in this case, the
CPS converter—takes care of making it work with a suitable underlying API. This
is what good programming languages ought to do!
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Exercise

Modify the program to store each previous continuations with some kind of
unique tag. Now that you have access to multiple continuations, simulate the
effect of different browser actions such as reloading the page (re-invoking a
continuation), going back (using a prior continuation), cloning a page (re-
using a continuation), etc. Does your implementation still work?

33.3 Implementation in the Core

Now that we’ve seen how CPS can be implemented through desugaring, we should
ask whether it can be put in the core instead.

Recall that we’ve said that CPS applies to all programs. We have one program
we are especially interested in: the interpreter. Sure enough, we can apply the CPS

transformation to it, making available what are effectively the same continuations.

33.3.1 Converting the Interpreter

Rather than mindlessly applying the transformation, which would result in a very
unwieldy (and unreadable) intepreter, we’ll clean things up a little as we go. Note
first of all that the interpreter needs to take an additional argument, representing
the rest of the computation:
<cps-interp> ::=

fun interp(e :: ExprC, nv :: List<Binding>, k):
cases (ExprC) e:
<cps-interp-numC>
<cps-interp-plusC>
<cps-interp-idC>
<cps-interp-fdC/fd2C>
<cps-interp-appC>
<cps-interp-app2C>

end
end

Exercise

Note that we have not annotated k, and we’ve dropped the return annotation
on interp. Fill them in.

When we have values, we simply “return” them through the continuation:
<cps-interp-numC> ::=
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| numC(n) =>
k(numV(n))

<cps-interp-idC> ::=
| idC(s) =>

k(lookup(s, nv))
For binary operations where the operator is a primitive, we have to follow the CPS

pattern:
<cps-interp-plusC> ::=

| plusC(l, r) =>
interp(l, nv,

lam(l-v):
interp(r, nv,

lam(r-v):
k(plus-v(l-v, r-v))

end)
end)

Note that CPS also ends up enforcing an order-of-evalation (in this case, left-to-
right) just as mutation did.

For function definitions, we have to be careful. Earlier (<cps-trans-fdC>), we
added a continuation parameter to closures. However, the fdC data structures are
merely data; it is functions like interp that need to be given the extra parameter.
Therefore, we can leave these alone:
<cps-interp-fdC/fd2C> ::=

| fdC(_, _) =>
k(closV(e, nv))

| fd2C(_, _, _) =>
k(closV(e, nv))

Finally, applications have to be converted to CPS as we have seen before:
<cps-interp-appC> ::=

| appC(f, a) =>
interp(f, nv,

lam(clos-v):
interp(a, nv,

lam(arg-v):
interp(clos-v.f.body,

xtnd-env(bind(clos-v.f.arg, arg-v), clos-v.e),
k)

end)
end)

and similarly when there are two arguments:
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<cps-interp-app2C> ::=
| app2C(f, a1, a2) =>
interp(f, nv,

lam(clos-v):
interp(a1, nv,

lam(arg1-v):
interp(a2, nv,

lam(arg2-v):
interp(clos-v.f.body,

xtnd-env(bind(clos-v.f.arg1, arg1-v),
xtnd-env(bind(clos-v.f.arg2, arg2-v),
clos-v.e)),

k)
end)

end)
end)

By converting the interpreter to CPS we have given it access to an extra pa-
rameter: k, the continuation of the interpreter. Because the interpreter’s execution
mimics the intended behavior of the interpreted program, the continuation of the
interpreter reflects the rest of the behavior of the interpreted program: i.e., apply-
ing interp to an expression e with continuation k will result in k being given
the value of e. We can therefore put k to work by exposing it to programs being
interpreted.

33.3.2 An Interaction Primitive in the Core

We can now lift our previous solution [section 33.2.3] to this modified interpreter.
This time, instead of the continuation being created by the program, it’s created by
the interpreter itself, with the program oblivious to this activity. Thus:

| read-numC(p) =>
interp(p, nv,

lam(p-v):
prompt = num-to-string(p-v.n)
print(’Web interaction: ’ + prompt)
web-continuation := k
raise(’Program halted waiting for user input’)

end)
Note that we must first evaluate the prompt expression to obtain its value. Now,
however, there is no longer a continuation expression to evaluate: the interpreter
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has the continuation at the ready. It is this continuation that we store in web-continuation.
Observe that this value is now a genuine closure in Pyret, not a closure data

structure we have constructed. Therefore, to apply it we can no longer extract its
fields; instead, the only thing we can do with it is to apply it:

fun run-wc(n):
web-continuation(numC(n))

end

With this in place, if we evaluate the expression

››› plusC(read-numC(numC(1)), read-numC(numC(2)))

we observe the same behavior as before:

Error:

"Program halted waiting for user input"

››› run-wc(3)

Error:

"Program halted waiting for user input"

››› run-wc(4)

numV(7)
Despite their similarities, there are two major differences between the two

strategies:

1. When using CPS, the hard work was actually done in the program transfor-
mation. The interpreter as a whole was essentially unchanged from before;
indeed, the main addition to the interpreter was effectively debugging sup-
port in the form of halting its execution, so we could make sure the continua-
tion strategy was correct. Here, the transformation is of the interpreter itself,
done one time, and the interpreter works to generate the continuations.
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2. In particular, the continuation now closes over the rest of the behavior, not
of the interpreted program but the interpreting one. Because the latter’s job,
however, is to precisely mimic that of the former, we cannot observe this
difference.

In the latter case, static scope (in Pyret) ensures that the correct computations are
resumed, even if we have multiple continuations stored. Both strategies implicitly
point out that continuations are themselves statically scoped.

33.4 Generators

Many programming languages now have a notion of generators. A generator is
like a procedure, in that one can invoke it in an application. Whereas a regular pro-
cedure always begins execution at the beginning, a generator resumes from where
it last left off. Of course, that means a generator needs a notion of “exiting before
it’s done”. This is known as yielding, namely returning control to whatever called
it.

There are many variations between generators. The points of variation, pre-
dictably, have to do with how to enter and exit a generator:

• In some languages a generator is an object that is instantiated like any other
object, and its execution is resumed by invoking a method (such as next in
Python). In others it is just like a procedure, and indeed it is re-entered by
applying it like a function. In languages where values in

addition to regular procedures
can be used in an application,
all such values are collectively
called applicables.

• In some languages the yielding operation—such as Python’s yield—is
available only inside the syntactic body of the generator. In others, such
as Racket, yield is an applicable value bound in the body, but by virtue of
being a value, it can be passed to abstractions, stored in data structures, and
so on.

Python’s design represents an extreme point in that a generator is simply any func-
tion that contains the keyword yield in its body. In addition, Python’s yield
cannot be passed as a parameter to another function that performs the yielding on
behalf of the generator.

There is also a small issue of naming. In many languages with generators, the
yielder is automatically called yield (as in Python). Another possibility is that
the user of the generator must indicate in the generator expression what name to
give the yielder; for example, in Racket, Curiously, Python expects users

to determine what to call self
or this in objects, but it does
not provide the same flexibility
for yield, because it has no
other way to determine which
functions are generators!

(generator (yield) (from)
(rec (f (lambda (n)
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(begin
(yield n)
(f (+ n 1)))))

(f from)))
but it might equivalently be
(generator (y) (from)

(rec (f (lambda (n)
(begin

(y n)
(f (+ n 1)))))

(f from)))
and if the yielder is an actual value, a user can also abstract over yielding:
(generator (y) (from)

(rec (f (lam (n)
(seq

((yield-helper y) n)
(f (+ n 1)))))

(f from)))
where yield-helper will presumably perform the actual yielding.

There are actually two more design decisions:

1. Is yield a statement or expression? In many languages it is actually an
expression, meaning it has a value: the one supplied when resuming the
generator. This makes the generator more flexible because the user of a
generator can use the parameter(s) to alter the generator’s behavior, rather
than being forced to use state to communicate desired changes.

2. What happens at the end of the generator’s execution? In many languages, a
generator raises an exception to signal its completion.

To implement generators, it will be especially useful to work from our CPS

interpreter. Why? Remember how generators work: to yield, a generator must

• remember where in its execution it currently is, and

• know where in its caller it should return to.

while, when invoked, it should

• remember where in its execution its caller currently is, and

• know where in its body it should return to.
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Observe the duality between invocation and yielding.
As you might guess, these “where”s correspond to continuations.

Exercise

Add generators to a CPS interpreter.

Exercise

How do generators differ from coroutines and threads? Implement coroutines
and threads using a similar strategy.

Exercise

We have seen that Python’s generators do not permit any abstraction over
yielding, whereas Racket’s do. Assuming this was intentional, why might
Python have made such a design decision?

33.5 Continuations and Stacks

Surprising as it may seem, CPS conversion actually provides tremendous insight
into the nature of the program execution stack. The first thing to understand is
that every continuation is actually the stack itself. This might seem odd, given that
stacks are low-level machine primitives while continuations are seemingly complex
procedures. But what is the stack, really?

• It’s a record of what remains to be done in the computation. So is the con-
tinuation.

• It’s traditionally thought of as a list of stack frames. That is, each frame has
a reference to the frames remaining after it finishes. Similarly, each contin-
uation is a small procedure that refers to—and hence closes over—its own
continuation. If we had chosen a different representation for program in-
structions, combining this with the data structure representation of closures,
we would obtain a continuation representation that is essentially the same as
the machine stack.

• Each stack frame also stores procedure parameters. This is implicitly man-
aged by the procedural representation of continuations, whereas this was
done explicitly in the data stucture representation (using bind).
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• Each frame also has space for “local variables”. In principle so does the
continuation, though by desugaring local binding, we’ve effectively reduced
everything to procedure parameters. Conceptually, however, some of these
are “true” procedure parameters while others are local bindings turned into
procedure parameters by desugaring.

• The stack has references to, but does not close over, the heap. Thus changes
to the heap are visible across stack frames. In precisely the same way, clo-
sures refer to, but do not close over, the store, so changes to the store are
visible across closures.

Therefore, traditionally the stack is responsible for maintaining lexical scope, which
we get automatically because we are using closures in a statically-scoped language.

Now we can study the conversion of various terms to understand the mapping
to stacks. For instance, consider the conversion of a function application (<cps-
trans-appC>). How do we “read” this? As follows:

• Let’s use k to refer to the stack present before the function application begins
to evaluate.

• When we begin to evaluate the function position (f), create a new stack
frame (fdC("f-v"): ...;. This frame has one free identifier: k. Thus
its closure needs to record one element of the environment, namely the rest
of the stack.

• The code portion of the stack frame represents what is left to be done once
we obtain a value for the function: evaluate the argument, and perform the
application, and return the result to the stack expecting the result of the ap-
plication: k.

• When evaluation of f completes, we begin to evaluate a, which also creates
a stack frame: fdC("a-v"): ...;. This frame has two free identifiers:
k and f-v. This tells us:

– We no longer need the stack frame for evaluating the function position,
but

– we now need a temporary that records the value—hopefully a function
value—of evaluating the function position.

• The code portion of this second frame also represents what is left to be done:
invoke the function value with the argument, in the stack expecting the value
of the application.
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Similarly, examining the CPS conversion of conditionals would tell us that we
have to create a new frame to evaluate the conditional expression we have to create
a new stack frame. This frame closes over the stack expecting the value of the entire
conditional. This frame makes a decision based on the value of the conditional
expression, and invokes one of the other expressions. Once we have examined
this value the frame created to evaluate the conditional expression is no longer
necessary, so evaluation can proceed in the original continuation.

Viewed through this lens, we can more easily provide an operational explana-
tion for generators. Each generator has its own private stack, and when execution
attempts to return past its end, our implementation raises an error. On invocation, a
generator stores a reference to the stack of the “rest of the program”, and resumes
its own stack. On yielding, the system swaps references to stacks. Coroutines,
threads, and generators are all conceptually similar: they are all mechanisms to
create “many little stacks” instead of having a single, global stack.

33.6 Tail Calls

Observe that the stack patterns above add a frame to the current stack, perform
some evaluation, and eventually always return to the current stack. In particular,
observe that in an application, we need stack space to evaluate the function position
and then the arguments, but once all these are evaluated, we resume computation
using the stack we started out with before the application. In other words, func-
tion calls do not themselves need to consume stack space: we only need space to
compute the arguments.

However, not all languages observe or respect this property. In languages that
do, programmers can use recursion to obtain iterative behavior: i.e., a sequence of
function calls can consume no more stack space than no function calls at all. This
removes the need to create special looping constructs; indeed, loops can simply be
expressed as a syntactic sugar.

Of course, this property does not apply in general. If a call to f is performed to
compute an argument to a call to g, the call to f is still consuming space relative to
the context surrounding g. Thus, we should really speak of a relationship between
expressions: one expression is in tail position relative to another if its evaluation
requires no additional stack space beyond the other. In our CPS desugaring, ev-
ery expression that uses k as its continuation—such as a function application after
all the sub-expressions have been evaluated, or the then- and else-branches of a
conditional—are all in tail position relative to the enclosing application (and per-
haps recursively further up). In contrast, every expression that has to create a new
stack frame is not in tail position.



478 CHAPTER 33. CONTROL OPERATIONS

Some languages have special support for tail recursion: when a procedure calls
itself in tail position relative to its body. This is obviously useful, because it enables
recursion to efficiently implement loops. However, it hurts “loops” that cannot
be squeezed into a single recursive function. For instance, when implementing a
scanner or other state machine, it is most convenient to have a set of functions each
representing one state, and transitioning to other states by making (tail) function
calls. It is onerous (and misses the point) to turn these into a single recursive
function. If, however, a language recognizes tail calls as such, it can optimize
these cross-function calls just as much as it does intra-function ones.

Scheme and Racket, in particular, promise to implement tail calls without al-
locating additional stack space. Though some people refer to this as “tail call op-
timization”, this term is misleading: an optimization is optional, whereas whether
or not a language promises to properly implement tail calls is a semantic feature.
Developers need to know how the language will behave because it affects how they
program: they need to know how to structure their loops!

Because of this feature, observe something interesting about the program af-
ter CPS transformation: all of its function applications are themselves tail calls!
Assuming the program might terminate at any call is tantamount to not using any
stack space at all (because the stack would get wiped out).

Exercise

Any program that consumes some amount of stack, when converted to CPS
and run, suddenly consumes no stack space at all. Why?

As a corollary, does conversion to CPS reduce the overall memory foot-
print of the program?

Exercise

Java’s native security model employs a mechanism called stack inspection
(look it up if you aren’t familiar with it). What is the interaction between CPS

and stack inspection? That is, if we were to CPS a program, would this affect
its security behavior?

If not, why not?
If so, how, and what would you suggest doing to recover security assum-

ing the CPS conversion was necessary?
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If you’ve programmed before in a language like Scheme or the student levels
of Racket (or the WeScheme programming environment), or for that matter even
in certain parts of OCaml, Haskell, Scala, Erlang, Clojure, or other languages, you
will find many parts of Pyret very familiar. This chapter is specifically written to
help you make the transition from (student) Racket/Scheme/WeScheme (abbrevi-
ated “RSW”) to Pyret by showing you how to convert the syntax. Most of what we
say applies to all these languages, though in some cases we will refer specifically
to Racket (and WeScheme) features not found in Scheme.

In every example below, the two programs will produce the same results.

34.1 Numbers, Strings, and Booleans

Numbers are very similar between the two. Like Scheme, Pyret implements arbitrary-
precision numbers and rationals. Some of the more exotic numeric systems of
Scheme (such as complex numbers) aren’t in Pyret; Pyret also treats imprecise
numbers slightly differently.
RSWPyret
1 1
RSWPyret
1/2 1/2
RSW Pyret
#i3.14∼3.14

Strings are also very similar, though Pyret allows you to use single-quotes as
well.
RSW Pyret
"Hello, world!""Hello, world!"
RSW Pyret
"\"Hello\", he said""\"Hello\", he said"
RSW Pyret
"\"Hello\", he said"’"Hello", he said’
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Booleans have the same names:
RSWPyret
truetrue
RSW Pyret
falsefalse

34.2 Infix Expressions

Pyret uses an infix syntax, reminiscent of many other textual programming lan-
guages:
RSW Pyret
(+ 1 2)1 + 2
RSW Pyret
(* (- 4 2) 5)(4 - 2) * 5

Note that Pyret does not have rules about orders of precedence between opera-
tors, so when you mix operators, you have to parenthesize the expression to make
your intent clear. When you chain the same operator you don’t need to parenthe-
size; chaining associates to the left in both languages:
RSW Pyret
(/ 1 2 3 4)1 / 2 / 3 / 4
These both evaluate to 1/24.

34.3 Function Definition and Application

Function definition and application in Pyret have an infix syntax, more reminiscent
of many other textual programming languages. Application uses a syntax familiar
from conventional algebra books:
RSW Pyret
(dist 3 4)dist(3, 4)

Application correspondingly uses a similar syntax in function headers, and in-
fix in the body:
RSW Pyret

(define (dist x y)
(sqrt (+ (* x x)

(* y y))))

fun dist(x, y):
num-sqrt((x * x) +

(y * y))
end
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34.4 Tests

There are essentially three different ways of writing the equivalent of Racket’s
check-expect tests. They can be translated into check blocks:
RSW Pyret

(check-expect 1 1)
check:

1 is 1
end

Note that multiple tests can be put into a single block:
RSW Pyret

(check-expect 1 1)
(check-expect 2 2)

check:
1 is 1
2 is 2

end

The second way is this: as an alias for check we can also write examples.
The two are functionally identical, but they capture the human difference between
examples (which explore the problem, and are written before attempting a solution)
and tests (which try to find bugs in the solution, and are written to probe its design).

The third way is to write a where block to accompany a function definition.
For instance:

fun double(n):
n + n

where:
double(0) is 0
double(10) is 20
double(-1) is -2

end

These can even be written for internal functions (i.e., functions contained inside
other functions), which isn’t true for check-expect.

In Pyret, unlike in Racket, a testing block can contain a documentation string.
This is used by Pyret when reporting test successes and failures. For instance, try
to run and see what you get:

check "squaring always produces non-negatives":
(0 * 0) is 0
(-2 * -2) is 4
(3 * 3) is 9

end
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This is useful for documenting the purpose of a testing block.
Just as in Racket, there are many testing operators in Pyret (in addition to is).

See the documentation.

34.5 Variable Names

Both languages have a fairly permissive system for naming variables. While you
can use CamelCase and under_scores in both, it is conventional to instead use what
is known as kebab-case. Thus:This name is inaccurate. The

word “kebab” just means
“meat”. The skewer is the
“shish”. Therefore, it ought to
at least be called “shish kebab
case”.

RSW Pyret
this-is-a-namethis-is-a-name
Even though Pyret has infix subtraction, the language can unambiguously tell apart
this-name (a variable) from this - name (a subtraction expression) because
the - in the latter must be surrounded by spaces.

Despite this spacing convention, Pyret does not permit some of the more exotic
names permitted by Scheme. For instance, one can write

(define e^i*pi -1)

in Scheme but that is not a valid variable name in Pyret.

34.6 Data Definitions

Pyret diverges from Racket (and even more so from Scheme) in its handling of data
definitions. First, we will see how to define a structure:
RSW Pyret

(define-struct pt (x y))
data Point:

| pt(x, y)
end

This might seem like a fair bit of overkill, but we’ll see in a moment why it’s
useful. Meanwhile, it’s worth observing that when you have only a single kind of
datum in a data definition, it feels unwieldy to take up so many lines. Writing it on
one line is valid, but now it feels ugly to have the | in the middle:

data Point: | pt(x, y) end

Therefore, Pyret permits you to drop the initial |, resulting in the more readable

data Point: pt(x, y) end

Now suppose we have two kinds of points. In the student languages of Racket,
we would describe this with a comment:

https://www.pyret.org/docs/latest/testing.html
http://c2.com/cgi/wiki?KebabCase
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;; A Point is either
;; - (pt number number), or
;; - (pt3d number number number)

In Pyret, we can express this directly:

data Point:
| pt(x, y)
| pt3d(x, y, z)

end

In short, Racket optimizes for the single-variant case, whereas Pyret optimizes for
the multi-variant case. As a result, it is difficult to clearly express the multi-variant
case in Racket, while it is unwieldy to express the single-variant case in Pyret.

For structures, both Racket and Pyret expose constructors, selectors, and pred-
icates. Constructors are just functions:
RSW Pyret
(pt 1 2)pt(1, 2)
Predicates are also functions with a particular naming scheme:
RSW Pyret
(pt? x)is-pt(x)
and they behave the same way (returning true if the argument was constructed
by that constructor, and false otherwise). In contrast, selection is different in the
two languages (and we will see more about selection below, with cases):
RSW Pyret
(pt-x v)v.x
Note that in the Racket case, pt-x checks that the parameter was constructed by
pt before extracting the value of the x field. Thus, pt-x and pt3d-x are two
different functions and neither one can be used in place of the other. In contast, in
Pyret, .x extracts an x field of any value that has such a field, without attention to
how it was constructed. Thus, we can use .x on a value whether it was constructed
by pt or pt3d (or indeed anything else with that field). In contrast, cases does
pay attention to this distinction.

34.7 Conditionals

There are several kinds of conditionals in Pyret, one more than in the Racket stu-
dent languages.

General conditionals can be written using if, corresponding to Racket’s if
but with more syntax.
RSW Pyret
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(if full-moon
"howl"
"meow")

if full-moon:
"howl"

else:
"meow"

end

RSW Pyret

(if full-moon
"howl"
(if new-moon

"bark"
"meow"))

if full-moon:
"howl"

else if new-moon:
"bark"

else:
"meow"

end

Note that if includes else if, which makes it possible to list a collection
of questions at the same level of indentation, which if in Racket does not have.
The corresponding code in Racket would be written

(cond
[full-moon "howl"]
[new-moon "bark"]
[else "meow"])

to restore the indentation. There is a similar construct in Pyret called ask, designed
to parallel cond:

ask:
| full-moon then: "howl"
| new-moon then: "bark"
| otherwise: "meow"

end

In Racket, we also use cond to dispatch on a datatype:

(cond
[(pt? v) (+ (pt-x v) (pt-y v))]
[(pt3d? v) (+ (pt-x v) (pt-z v))])

We could write this in close parallel in Pyret:

ask:
| is-pt(v) then: v.x + v.y
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| is-pt3d(v) then: v.x + v.z
end

or even as:

if is-pt(v):
v.x + v.y

else if is-pt3d(v):
v.x + v.z

end

(As in Racket student languages, the Pyret versions will signal an error if no branch
of the conditional matched.)

However, Pyret provides a special syntax just for data definitions:

cases (Point) v:
| pt(x, y) => x + y
| pt3d(x, y, z) => x + z

end

This checks that v is a Point, provides a clean syntactic way of identifying the
different branches, and makes it possible to give a concise local name to each
field position instead of having to use selectors like .x. In general, in Pyret we
prefer to use cases to process data definitions. However, there are times when,
for instance, there many variants of data but a function processes only very few
of them. In such situations, it makes more sense to explicitly use predicates and
selectors.

34.8 Lists

In Racket, depending on the language level, lists are created using either cons
or list, with empty for the empty list. The corresponding notions in Pyret are
called link, list, and empty, respectively. link is a two-argument function,
just as in Racket:
RSW Pyret
(cons 1 empty)link(1, empty)
RSW Pyret
(list 1 2 3)[list: 1, 2, 3]

Note that the syntax [1, 2, 3], which represents lists in many languages,
is not legal in Pyret: lists are not privileged with their own syntax. Rather, we
must use an explicit constructor: just as [list: 1, 2, 3] constructs a list,
[set: 1, 2, 3] constructs a set instead of a list. In fact, we can create our own

constructors and use them with
this syntax.

https://www.pyret.org/docs/latest/Expressions.html#%28part._s~3aconstruct-expr%29
https://www.pyret.org/docs/latest/Expressions.html#%28part._s~3aconstruct-expr%29
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Exercise

Try typing [1, 2, 3] and see the error message.

This shows us how to construct lists. To take them apart, we use cases. There
are two variants, empty and link (which we used to construct the lists):
RSW Pyret

(cond
[(empty? l) 0]
[(cons? l)
(+ (first l)

(g (rest l)))])

cases (List) l:
| empty => 0
| link(f, r) => f + g(r)

end

It is conventional to call the fields f and r (for “first” and “rest”). Of course, this
convention does not work if there are other things by the same name; in particular,
when writing a nested destructuring of a list, we conventionally write fr and rr
(for “first of the rest” and “rest of the rest”).

34.9 First-Class Functions

The equivalent of Racket’s lambda is Pyret’s lam:
RSW Pyret
(lambda (x y) (+ x y))lam(x, y): x + y end

34.10 Annotations

In student Racket languages, annotations are usually written as comments:

; square: Number -> Number
; sort-nums: List<Number> -> List<Number>
; sort: List<T> * (T * T -> Boolean) -> List<T>

In Pyret, we can write the annotations directly on the parameters and return values.
Pyret will check them to a limited extent dynamically, and can check them statically
with its type checker. The corresponding annotations to those above would be
written as

fun square(n :: Number) -> Number: ...

fun sort-nums(l :: List<Number>) -> List<Number>: ...
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fun sort<T>(l :: List<T>, cmp :: (T, T -> Boolean)) -> List<T>: ...
Though Pyret does have a notation for writing annotations by themselves (anal-
ogous to the commented syntax in Racket), they aren’t currently enforced by the
language, so we don’t include it here.

34.11 What Else?

If there are other parts of Scheme or Racket syntax that you would like to see
translated, please let us know.

http://cs.brown.edu/~sk/Contact/
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Chapter 35

Glossary

Rbandwidth

The bandwidth between two network nodes is the quantity of data that
can be transferred in a unit of time between the nodes.

Rcache

A cache is an instance of aNspace-time tradeoff : it trades space for
time by using the space to avoid recomputing an answer. The act of us-
ing a cache is called caching. The word “cache” is often used loosely;
we use it only for information that can be perfectly reconstructed even
if it were lost: this enables a program that needs to reverse the trade—
i.e., use less space in return for more time—to do so safely, knowing
it will lose no information and thus not sacrifice correctness.

Rcoinduction

Coinduction is a proof principle for mathematical structures that are
equipped with methods of observation rather than of construction.
Conversely, functions over inductive data take them apart; functions
over coinductive data construct them. The classic tutorial on the topic
will be useful to mathematically sophisticated readers.

Ridempotence

An idempotent operator is one whose repeated application to any value
in its domain yields the same result as a single application (note that
this implies the range is a subset of the domain). Thus, a function
f is idempotent if, for all x in its domain, f(f(x)) = f(x) (and by
induction this holds for additional applications of f ).

491
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Rinvariants

Invariants are assertions about programs that are intended to always
be true (“in-vary-ant”—never varying). For instance, a sorting routine
may have as an invariant that the list it returns is sorted.

Rlatency

The latency between two network nodes is the time it takes for packets
to get between the nodes.

Rmetasyntactic variable

A metasyntactic variable is one that lives outside the language, and
ranges over a fragment of syntax. For instance, if we write “for ex-
pressions e1 and e2, the sum e1 + e2”, we do not mean the pro-
grammer literally wrote “e1” in the program; rather we are using e1
to refer to whatever the programmer might write on the left of the
addition sign. Therefore, e1 is metasyntax.

Rpacked representation

At the machine level, a packed representation is one that ignores tra-
ditional alignment boundaries (in older or smaller machines, bytes; on
most contemporary machines, words) to let multiple values fit inside
or even spill over the boundary.

For instance, say we wish to store a vector of four values, each of
which represents one of four options. A traditional representation
would store one value per alignment boundary, thereby consuming
four units of memory. A packed representation would recognize that
each value requires two bits, and four of them can fit into eight bits,
so a single byte can hold all four values. Suppose instead we wished
to store four values representing five options each, therefore requir-
ing three bits for each value. A byte- or word-aligned representation
would not fundamentally change, but the packed representation would
use two bytes to store the twelve bits, even permitting the third value’s
three bytes to be split across a byte boundary.

Of course, packed representations have a cost. Extracting the values
requires more careful and complex operations. Thus, they represent a

classicNspace-time tradeoff : using more time to shrink space con-
sumption. More subtly, packed representations can confound certain
run-time systems that may have expected data to be aligned.
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Rparsing

Parsing is, very broadly speaking, the act of converting content in one
kind of structured input into content in another. The structures could
be very similar, but usually they are quite different. Often, the input
format is simple while the output format is expected to capture rich
information about the content of the input. For instance, the input
might be a linear sequence of chacters on an input stream, and the
output might be expected to be a rich, tree-structured according to
some datatype: most program and natural-language parsers are faced
with this task.

Rreduction

Reduction is a relationship between a pair of situations—problems,
functions, data structures, etc.—where one is defined in terms of the
other. A reduction R is a function from situations of the form P to ones
of the form Q if, for every instance of P, R can construct an instance
of Q such that it preserves the meaning of P. Note that the converse
strictly does not need to hold.

Rspace-time tradeoff

Suppose you have an expensive computation that always produces the
same answer for a given set of inputs. Once you have computed the
answer once, you now have a choice: store the answer so that you
can simply look it up when you need it again, or throw it away and
re-compute it the next time. The former uses more space, but saves
time; the latter uses less space, but consumes more time. This, at its
heart, is the space-time tradeoff. Memoization [section 22.3], using a

Ncache, environments [section 26.2], etc. are all instances of it.

Rtype variable

Type variables are identifiers in the type language that (usually) range
over actual types.

Rwire format

A notation used to transmit data across, as opposed to within, a closed
platform (such as a virtual machine). These are usually expected to
be relatively simple because they must be implemented in many lan-
guages and on weak processes. They are also expected to be unam-
biguous to aid simple, fast, and correct parsing. Popular examples
include XML, JSON, and s-expressions [section 23.2].
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